

IAA ADVANCED PHC TRAINING PROGRAM

General Field Diagnostics

- Biggest challenge facing arborists is lack of information!
 - History of the site?
 - Early symptoms?
 - Construction, excavation, chemical treatments?

 \bullet

– Time factor?

- •
- •

You Have to Think Like a Detective

General Diagnosis

- Living or biotic plant problems
 - Infectious can spread from one plant to another

 \bullet

- Plant pathogens
- Insects and mites
- Small and large animals
- Birds

General Diagnosis

- Nonliving or abiotic plant problems
 - Non-infectious does not spread from one plant to another

- Physical factors (weather)
- Mechanical factors (wounding of tree)
- Chemical factors (pesticide drift)
- Nutrient factors (iron chlorosis)

Steps in Proper Plant Problem Diagnostics

• **Step #1:** Accurately identify the plant

- Step #2: Look for patterns of abnormality

 Non-uniform damage patterns are usually caused by living factors
 - Uniform damage patterns are usually caused by nonliving factors

• Step #3: Carefully examine the site

Sap-Sucker Damage

Steps in Proper Plant Problem Diagnostics

• **Step #4:** Note the color, size, and thickness of the foliage

• **Step #5:** Check the trunk and branches

• Step #6: Examine the roots and root collar

Important Points to Remember!!

- A good portion of all plant problems result from adverse cultural and environmental conditions
- Most plant disorders are caused by a complex or combination of nonliving stresses and living contributors

 Be consistent in your field diagnosis and try to follow a set protocol

Symptoms

- **Symptom** the effect a causal agent has on a plant and how that plant respond to the disorder
 - Chlorosis
 - Wilting
 - Leaf scorch
 - Dieback and blights
 - Poor vitality/growth
 - Stunting-distortion
 - Needle-cast of conifers
 - Death

Signs

- Sign direct indicators of primary or secondary causal agents or something "left behind" by the agent
 - Conks or fruiting bodies of fungi
 - Spores and cankers
 - Insect frass
 - Emergence holes
 - Insect caste skins
 - Tents/Webs
 - Insect egg masses

Common Woody Plant Problems

Tree Stress Factors

- **Stress** any condition that causes a decline in tree health
 - Chronic stress long term effects (i.e. nutrient problems, pH, weather)

 Acute stress - sudden and causes immediate damage (i.e. spring frost or freeze, chemical injury)

Stress is not be irreversible, but may be hard to alleviate

 \bullet

Abiotic Plant Disorders

- Disorders that affect the normal growth and health of a tree
- Soil and site problems
 - Root problems
 - Soil compaction
- Physical and mechanical injury

 Sudden events like storms

Long-term physiological disorders

Abiotic Disorders

- Temperature extremes
 - Drought
 - Scorch
 - Frost cracks and sunscald
- Competition and allelopathy
 - Allelopathy chemical inhibition of growth and development of one plant by another (i.e. black walnut, sugar maple, black locust, hackberry, cherry)

 \bullet

Allelopathy

•

Allelopathy

Abiotic Disorders

- Pollution damage
 - Acute toxicity exposure to high concentration over a short period of time
 - Chronic injury longer exposures over time at lower concentrations

- Major pollutants include:
 - Sulfur dioxide Fluoride
 - Ozone

PAN (peroxyactyl nitrates)

- Chemical injury
 - Herbicides such as 2,4-D and dicamba

Response of peach (A), pin oak (B), maple (C), elm (D), and grape (E) to dicamba or dicamba + glyphosate resulting from chemical drift

Symptoms Associated with Growth Regulators by Root Uptake

Effects of dicamba drift on grape vines

• Leaf feeding insect pests

- "Consumers"
- Tent and web-makers
- Skeletonizers
- Leafminers
- Knotchers

- Sap-feeding insect pests
 - Aphids
 - Plantbugs and leafhoppers
 - Scales
 - Mites

Wood-boring and feeding insects

- Clear-wing moth borers
- Beetle borers
- Bark Beetles

Wood-boring and feeding insects

- Shoot and stem borers
- Carpenter ants
- Termites

Insects as Vectors of Pathogens

- Bark beetles: DED and blue stain fungus
- Aphids and leafhoppers: bacteria and viruses
- Pine sawyer beetle: pinewood nematode
- Honey bees: fireblight

Diseases

- "The Disease Triangle"
- Most pathogens are host specific
- Defoliation, wilts, needle casts, galls, death
- Vast majority of diseases are caused by fungi
- Bacteria, viruses, and phytoplasma-like-organisms (PLO's) also cause disease

•

Wildlife and Animal Damage

- Slugs
- Small Animals (Rodents)
- Large Animals (Deer, Beaver)
- Birds

"Pulling it all Together"

- Use your clues for assistance in identifying the **specific causal agent(s)**
 - Reference books
 - Specialist-entomologist, pathologist, etc.
 - Laboratory results

Suggested References

INSECTS THAT FEED ON TREES AND SHRUBS

IPM (Integrated Pest Management) of Midwest Landscapes

θ

IpM

"Pulling it all Together"

- Use your clues for assistance in identifying the specific causal agent(s)
- Be a detective
- Due your "homework"
- Ask good questions
- Look for signs and symptoms
- Process of elimination
- Consult the "experts"
- Be persistent and logical

Getting Additional Help

• Laboratory diagnosis may be needed in some cases

• Most land-grant universities have diagnostic clinics

• **Take good, fresh samples** that are representative of the problem

 \bullet

SUMMARY

- General diagnosis
- Symptoms and signs
- Tree stress

- Abiotic disorders
- Biotic disorders
- Getting help

END OF SESSION

|