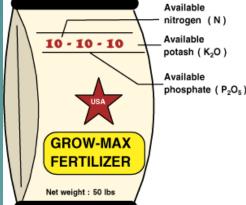
WHY ARE WOODY PLANTS SOMETIMES YELLOW?

Understanding, Diagnosing, and Managing Soil Nutrient Issues

INTRODUCTION

Factors contributing to chlorosis


How to diagnose nutrient deficiencies

Consequences of improper diagnosis

 Best management practices (BMP's for nutrient deficiencies

ESSENTIAL MACRONUTRIENTS

Nitrogen (N)
 Amino acids, proteins, DNA
 Phosphorus (P)
 Energy (ATP)
 Potassium (K)
 Regulatory enzymes
 Magnesium (Mg)
 Chlorophyll and energy
 Calcium (Ca)
 Cell division and cell walls
 Synthesis of proteins and hormones

ESSENTIAL MICRONUTRIENTS

♦ Iron (Fe) Copper (Cu) Boron (B) Chlorine (Cl) \diamond Zinc Zn) Molybdenum (Mo)

 Chlorophyll, proteins Manganese (Mn) N-fixation, proteins Translocation, cell growth

> Stimulates auxin synthesis Transforms nitrate to amino acids

MOBILITY OF PLANT NUTRIENTS

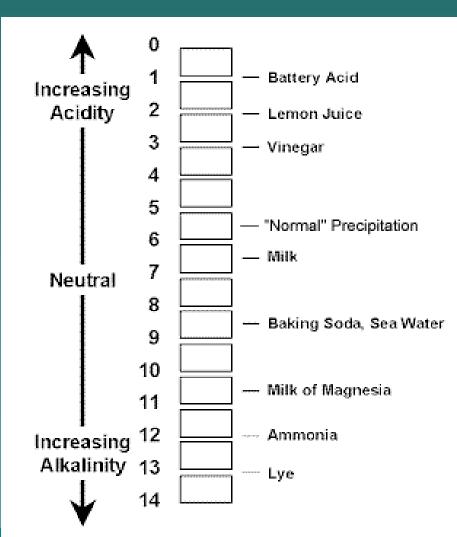
Nitrogen
Phosphorus
Potassium
Calcium
Magnesium
Sulfur

Mobile
Mobile
Mobile
Mobile
Non-Mobile
Mobile
Mobile

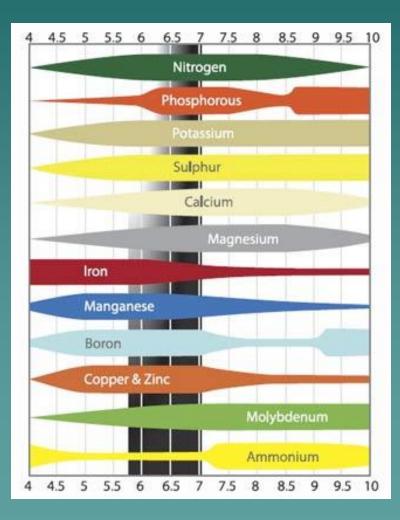
MOBILITY OF PLANT NUTRIENTS

Boron
Copper
Iron
Manganese
Molybdenum
Zinc

Non-mobile
Non-mobile
Non-mobile
Non-mobile
Non-mobile

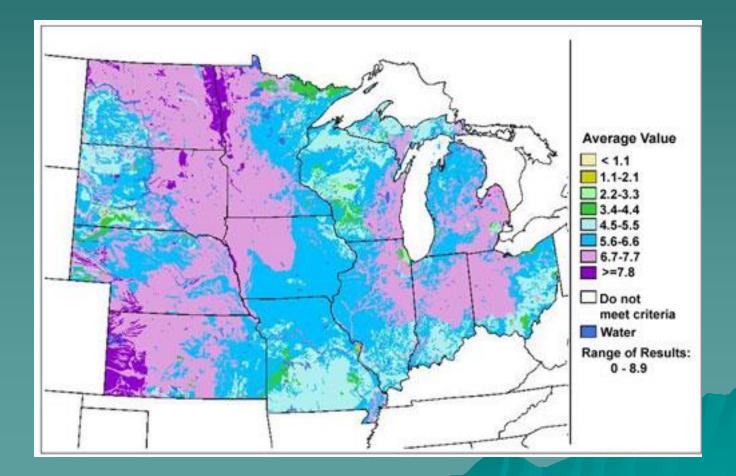

FACTORS AFFECTING NUTRIENT AVAILABILITY

♦ pH Soil texture and structure Drainage Amount of organic matter Soil microbes, vegetation, animals Soil formation and geology ♦ Soil disturbance

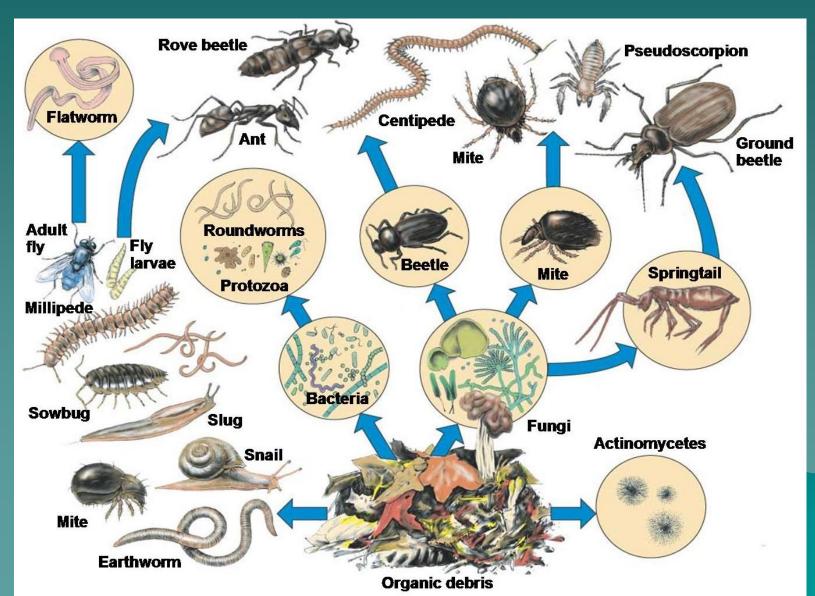

WHAT IS pH?

 Measure of acidity and alkalinity

 Expresses the concentration of H+ ions present in solution



pH AND NUTRIENT AVAILABILITY



OPTIMUM pH FOR CROP GROWTH	
potatoes	5.5 - 6.5
	5.6 - 6.8
permanent pastore	5.5 - 7.0
	6.0 - 7.0
linseed se state and see	5.5 - 7.0
	6.0 - 7.5
oilseed rape	6.0 - 7.5
When and maize	6.0 - 7.5
peas and beans	6.5 - 7.5
barley	6.5 - 7.5
field vegetables	6.5 - 7.5
field brassica	6.5 - 8.0
sugar beet	

REGIONAL pH VALUES

SOIL BIODIVERSITY

 Organisms involved in the first phases of decomposition switch from nutrient cycling to survival

- Earthworms move deeper into the soil

- Protozoa, nematodes, insects go dormant

 Moisture is required for microbes for decomposition and release of N, P, K, and S for plant uptake

Midwestern micro-organisms (bacteria, fungi) are mesophiles

 Grow from 15 to 30°C (58 to 88°F)
 Upper threshold is about 40°C (103°F)

 Nucleic acids (DNA/RNA) and proteins are irreversibly denatured or damaged

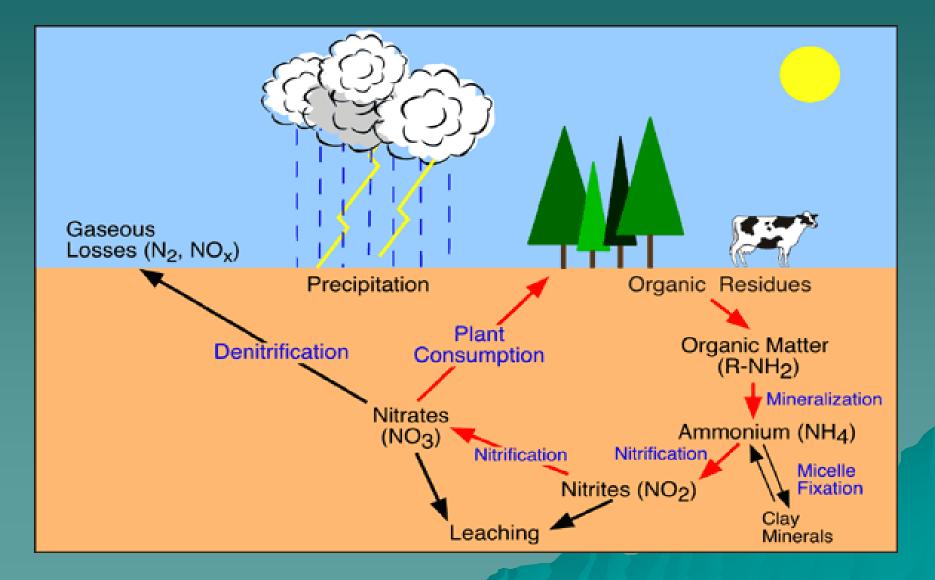
Cell membranes and walls may rupture

 Microbes can succumb to heat stress and desiccation under severe drought

 Bare soil temperatures at Sanborn Field at UMC from 28 June to 27 July 2012 at 2-4 inches ranged from 80 to 94°F

Micro-organisms are resilient

N fixing bacteria are sensitive to high temperatures


 Enzyme activity can be reduced by 80% or more for cycling nitrogen, phosphorus, and carbon

NUTRIENT DEFICIENCIES THAT LEAD TO CHLOROSIS IN PLANTS

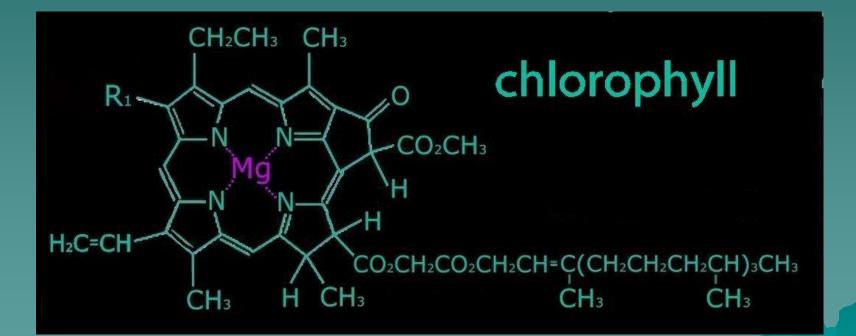
Nitrogen
Magnesium
Sulfur
Iron
Manganese

NITROGEN CYCLE

NITROGEN DEFICIENCES IN BROADLEAF WOODY PLANTS

Chlorosis or yellowing Stunted leaf and shoots Early leaf drop Thin crowns Older tissues will show chlorosis before younger tissues

NITROGEN DEFICIENCES IN CONIFERS


Short and yellow needles

Poor needle retention

 Lower crowns yellow and upper crowns green

MAGNESIUM MOLECULE

MAGNESIUM DEFICIENCES IN BROADLEAF WOODY PLANTS

 Marginal chlorosis on older leaves followed by interveinal chlorosis

 Shoot growth affected only when severe Symptoms disappear quickly after treatment

MAGNESIUM DEFICIENCES IN CONIFERS

 Golden or yellow-tip "halo" on needles
 Sharp transition from yellow to green Symptoms more severe in moist years

SULFUR DEFICIENCES IN BROADLEAF PLANTS AND CONIFERS

Symptoms similar to N deficiency
 Younger foliage yellow-green or yellow
 Older leaves usually not affected

IRON DEFICIENCES IN BROADLEAF PLANTS

Interveinal chlorosis of young leaves
Leaves yellow upon emergence (oaks)
Interveinal necrotic spots
Leaves curl, wither, and die

IRON DEFICIENCES IN CONIFERS

New growth stunted and chlorotic
 Older needles and lower crown green

MANGANESE DEFICIENCES IN CONIFERS

Symptoms similar to iron

New needles chlorotic and pale green

Tip necrosis may be present

MANGANESE DEFICIENCES IN BROADLEAF WOODY PLANTS

- Marginal leaf chlorosis extending beyond major veins
- Bands of green along veins and midrib
 Necrotic spots in chlorotic areas

Reduced shoot growth

RED MAPLE NUTRIENT STUDY (Objectives)

 To determine the efficacy of Verdur Mn micro-nutrient versus macro-infusion tree injections for alleviation of chlorosis in red maple

 To determine optimum dosage rates and application timing

MEAN SPAD LEAF READINGS FOR RED MAPLES

TREATMENT	2008	2009
Mn at high rate prior to leaf drop		42b
Mn + Fe at high rate prior to leaf drop		41b
Mn + soil tablets prior to leaf drop		41b
Mn at low rate at bud break	38c	38b
Mn + soil tablets at bud break	37c	41b
Mn at low rate with macro-infusion	37c	37b
Mn + Fe at low rate with macro-infusion	33b	39b
Mn + soil tablets with macro-infusion	33b	34b
Untreated Control (UTC)	28a	20a
Significance	P<0.001	P<0.001

WHAT DO SPAD READINGS MEAN?

COLOR

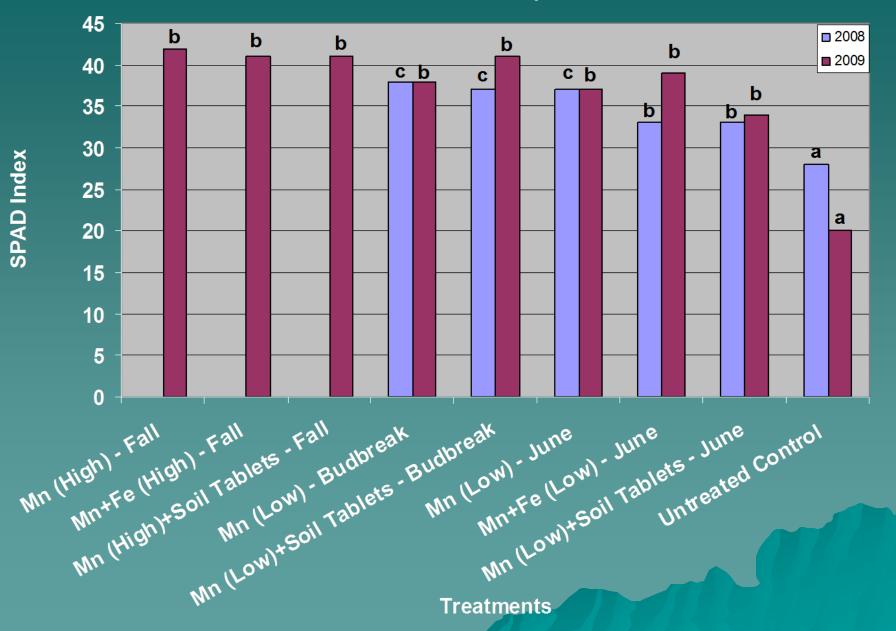
SPAD READING

Bright yellow to gold
Light yellow to pale green
Ivory to light green
Moderate or "normal" green
Dark green

<10
10-25
26-35
36-50
50 +

UNTREATED CONTROL (SPAD READING= 0-15)

TREATMENTS 1-8 (SPAD READINGS=35-50)



Leaf Greenness - Naperville

Canopy Chlorosis Ratings - Northbrook

100 September 2008
June 2009
September 2009 а 90 а а 80 70 ab 60 50 **40** bc bc 30 b bc 20 b bc bc С 10 b С b b С 0 Mn High + Fe High - Fall Mn Low + Fe Low - June Mn Low - Budbreak Mn High - Fall Mn Low - June Untreated Control Treatments

Percent Canopy Chlorotic

DETERMINING NUTRIENT REQUIREMENTS

Visual observations and symptoms

Soil sampling and testing

Foliar tissue testing

• Put it all together

CORRECTING FOR NUTRIENT DEFICIENCIES
* "Right plant – Right place"

Foliar applications

Trunk injections and implants

Fertilizer applications

Soil acidifying treatments

"Right Plant – Right Place"

Know your local soils
 Select plants that tolerate alkaline soils

FOLIAR NUTRIENT TREATMENTS FOR IRON AND MANGANESE

Use chelated iron and ferrous sulfate for iron

Chelated manganese or manganese sulfate

Provides quick "green up" and quick fix

Only affects treated leaves

TRUNK IMPLANTS AND INJECTIONS OF IRON AND MANGANESE

 Requires drilling holes into trunk base or stem

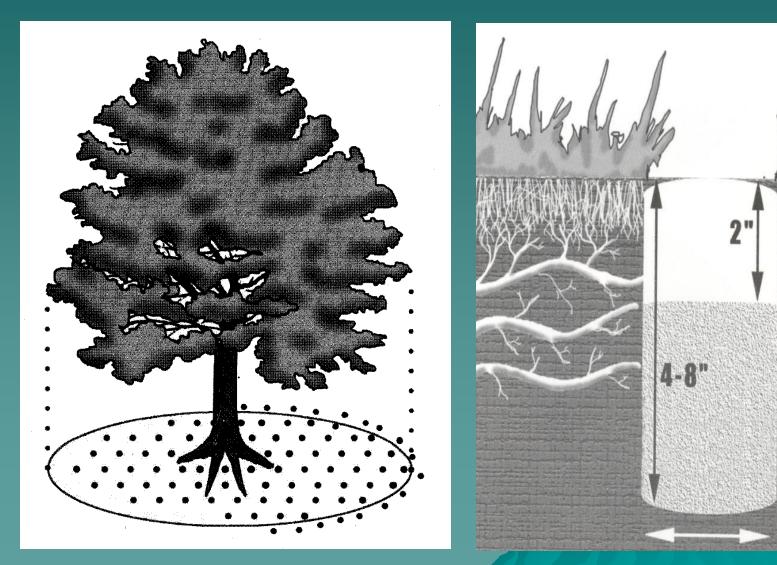
 Effects show up in about one month and may last up to 2 years

 Late spring-early summer recommended

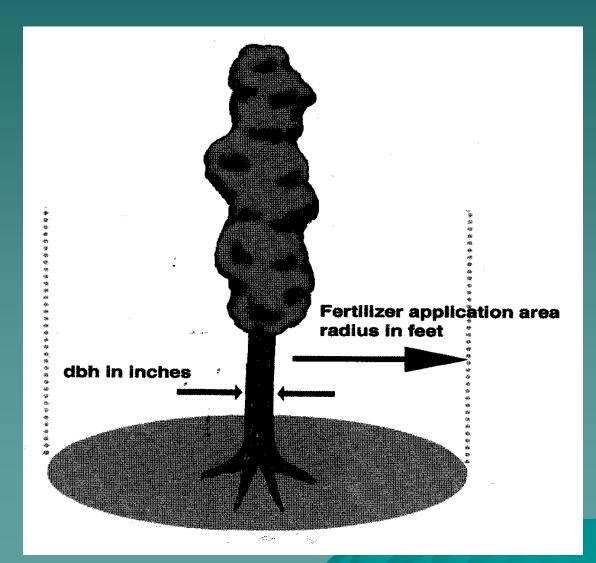
SOIL FERTILIZERS FOR IRON AND MANGANESE DEFICIENCIES

 Chelated iron fertilizers for neutral and high pH soils

 Annual applications in top 1 to 2 inches of soil in spring


 Chelated iron placed in augered holes in a grid pattern under drip line SOIL FERTILIZER TREATMENT FOR IRON AND MANGANESE
 Common chelated iron fertilizers

 EDTA (soluble form up to 6.3)


– DPTA (effective up to 7.5)

- EDDHA (effective from 4.0 to 9.0)

SUB-SURFACE DRILL HOLE APPLICATION

SUB-SURFACE DRILL HOLE APPLICATION

HOW TO ACIDIFY THE SOIL

PH is the real issue

 Soil acidification treatments are temporary and will need to be repeated at regular intervals

 Soil acidifiers are worked into the top 6-12 inches of soil

Only practical for shrubs and small trees

HOW TO ACIDIFY THE SOIL

- Elemental sulfur is the most economical
 Takes 3-4 months for full effect
- Iron sulfate acts quickly

 Acts in 3-4 weeks
 Requires higher rates and more expensive

 Avoid ammonium sulfate and aluminum sulfate

NITRATE LEACHING PROBLEM

 Contributes to an impoverished ecosystem

Causes serious environmental concerns
 Contaminates drinking water

- Causes eutrophication

"TAKE HOME MESSAGE" (Per Dr. Bob Kremer)

 "Amendments with organic materials increases soil organic matter, which influences physical, chemical, and biological properties, all which work together to maintain high soil quality."

"High soil quality under sustainable management would seem to withstand the effects of drought."

SUMMARY

N and plant growth Origin and distribution of N Nitrogen cycle Immobilization and mineralization Soluble organic N Ammonium fixation by clay minerals Ammonia volatilization Nitrification

SUMMARY

 Nitrate leaching problem Gaseous losses by de-nitrification Biological N fixation Symbiotic fixation with legumes Symbiotic fixation with non-legumes Non-symbiotic N fixation Reactions of N fertilizers Practical management of soil N