2,4,-D, DICAMBA, AND HERBICIDE DRIFT

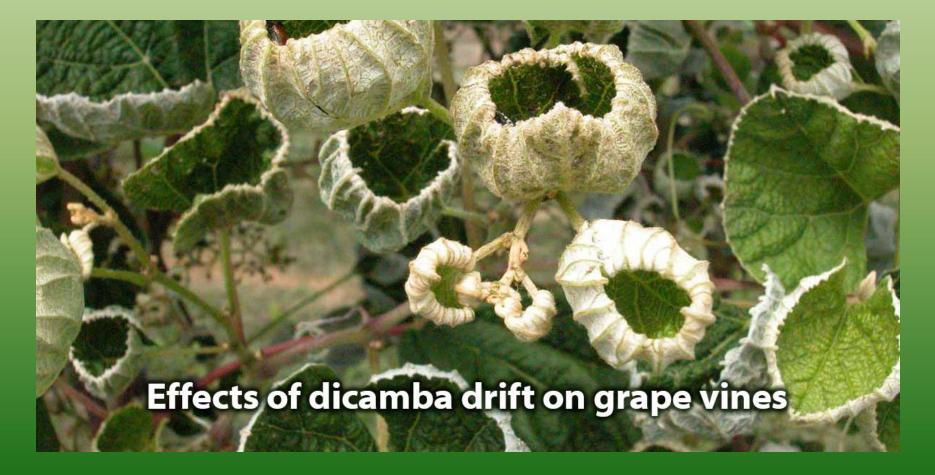
Diagnosing Herbicide Drift in the Field Results of Herbicide Tissue Analysis What We Have Learned and Thoughts Going Forward

INJURY SYMPTOMS WITH GROWTH REGULATORS

 Twisted and downward cupping of leaves

 Narrow strap-like leaves on new growth

• Root uptake is more damaging



SYMPTOMS ASSOCIATED WITH PHENOXY CHEMICAL HERBICIDES

SYMTPOMS ASSOCIATED WITH GROWTH REGULATORS

 Root uptake of dicamba causes leaves to cup upward instead of downward

HERBICIDE INJURY LOOK-ALIKES

• Mites, insects, diseases

Adverse weather

• Soil compaction

Drought

Root stress

HERBICIDE INJURY LOOK-ALIKES

• Improper soil pH

Misapplied fertilizers

Genetic mutations

• De-icing salts

• Know symptoms of herbicides on specific plants

- Mode of action, fate in soils, and dosage applied
 - Dicamba can be taken up by tree roots in treated areas
 - Know what other herbicides were applied

Timing

- Damage usually occurs within days after exposure
- Symptoms may develop several weeks after exposure
- Later, if tree roots grow into a treated site

Patterns on adjacent plants

- Look for similar damage patterns
- Look for damage on other different plants

Location

- Injured plants relative to herbicide application
- Soil sterilants will move in direction of water flow
- Weather at application time

Recovery

- Affected by overall plant vitality
- Amount of herbicide received
- Type of herbicide
- Growing conditions after contact

- New growth usually will appear normal
- Symptoms may persist for 2 to 3 seasons
- Heavy dose may kill plants

- Contact herbicides cause leaf spotting
- Total tissue death is uncommon
- Plants absorbing soil sterilant may die
- Timing of exposure is important
- Exposure late in year is not as injurious

PLANTS SENSITIVE TO GROWTH REGULATORS

- Apple
- Forsythia
- Horse chestnut
- Redbud
- Sycamore

Box elder

Grape Norway maple

Rose

Dogwood Honeylocust Petunia Siberian elm

PLANTS EXTREMELY SENSITIVE TO HERBICIDES

Elderberry

- Extremely Sensitive
- Grapes
 Lima bean
- Snap bean Soybean
- Peach
- Oaks Viburnum

Southern Pea Tobacco Dogwood

PLANTS VERY AND MODERATELY SENSITIVE TO HERBICIDES

- Very Sensitive
- Cotton
- Tomato
- Pumpkin

Pepper Watermelon Squash

- Moderately Sensitive
- Cantaloupe
- Apple
- Redbud

Cucumber Maple Rose

PLANTS WITH LOW SENSITIVITY TO HERBICIDES

- Low Sensitivity
- Peanut
- Cabbage
- Mustard
- Walnut
- Raspberry
- Sweetgum
- Hydrangea

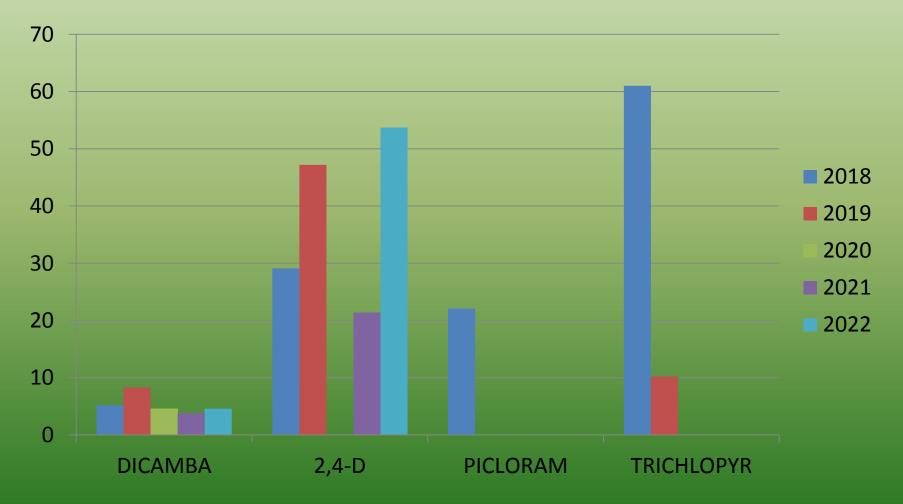
Broccoli Kale

Turnip

Pecan

Strawberry

Crabapple



HERBICIDE LEAF TISSUE SAMPLES 2018-2022

(Herbicide concentrations in ppb)

2023 MSN Herbicide Leaf Tissue Results (ppb)

Chemical (ppb)	White Oak (N=4)	N. Red Oak (N=2)	Bur Oak (N=4)	Swamp White Oak (N=4)
2,4-D	18.7 (8.3-37.9)	86.0 (85.3-86.8)	14.1 (10.8-19.3)	25.4 (15.1-31.2)
2,4,DP	<5	ND	ND	ND
Dicamba	4.6	ND	1.5	1.0
Clopyralid	6.4	<5	20.0	8.1 (<5-11.6)
Triclopyr	200.5 (155-236)	ND	288.0 (174-395)	49.8 (29.2-84.2)

Illinois Mason State Nursery (MSN)

2023 MSN Herbicide Drift Damage Timeline

- Ag field North side of nursery (Damage seen mid-July)
 - Field in pasture with no barriers or windbreaks
 - Very heavy damage to white and bur oaks in center of plot
 - Crossbow? (2,4-D + Triclopyr) for woody plant control
 - 2,4-D (18.7 ppb), and Triclopyr (200 ppb) detected in leaf tissue
- Ag field on South side of nursery (Sprayed on 20 July)
 - Unknown herbicide
 - Conifer windbreaks on west and south sides
 - Moderate damage to northern red oaks
 - 2,4-D (86.0 ppb) detected in leaf tissue

2023 MSN Herbicide Drift Damage Timeline

- Ag field East side of nursery (Sprayed 14 June)
 - 2,4-D suspected
 - No windbreaks
 - Temperature inversion occurred and damage to wildflowers
 - Swamp white oaks damaged [2,4-D (25.4 ppb), and Triclopyr (49.8 ppb detected in leaf tissue]

• Ag field West side of nursery (Sprayed on 20 July)

- Sprayed following wheat bean rotation (unknown herbicide)
- IDA considered it might be "Liberty" (glufosinate-ammonium)
- Damaged many plants except conifers, complaint filed with IDA
- Partial conifer windbreak on north half of plot
- KCT damaged [Only 2,4-D (34.9 ppb) detected in leaf tissue]
- White and bur oaks damaged [2,4-D (18.7 to 14.1 ppb), and Triclopyr (200 to 288 ppm), respectively detected in leaf tissue]

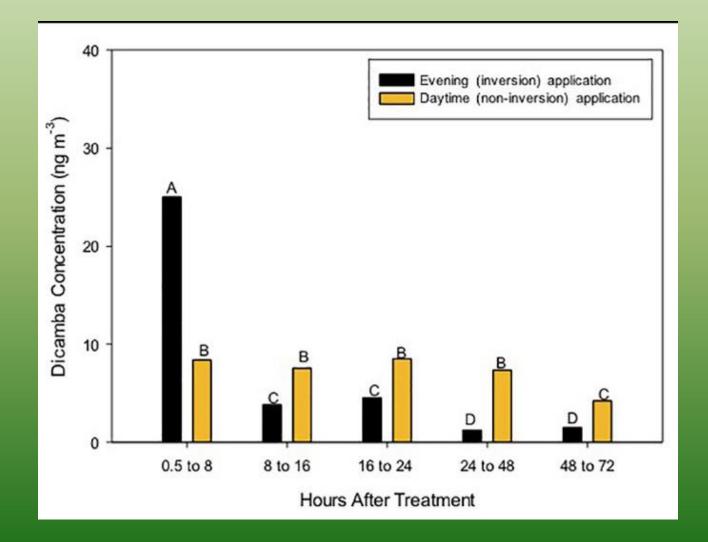
Herbicide Drift Damage – MSN (N. Red Oak-Left and White Oak-Right)

"Major Take Homes" 2022 vs. 2023

- Location, Location, Location!
- Cropping systems and application dates
- Crop rotation is major factor in herbicide damage and timing of damage
- Hard to document damage unless present at time of application
- **2,4-D:** Factor in 2023, but residues 50% lower than in 2022
- **Dicamba** residues: 50% lower than 2022
- Triclopyr residues: 3X higher than 2022
- Oomycete levels low except for NROs

"Major Take Homes" 2022 vs. 2023

- Drought combined with extensive herbicide damage resulted in leaf scorch and deformation on white oaks
- Outbreak of oak leaf skeletonizer on white oak and bur oaks added to the misery
- Soils nutrient deficiencies (i.e. Ca, P) and presence of root-rotting pathogens may contribute to tree decline

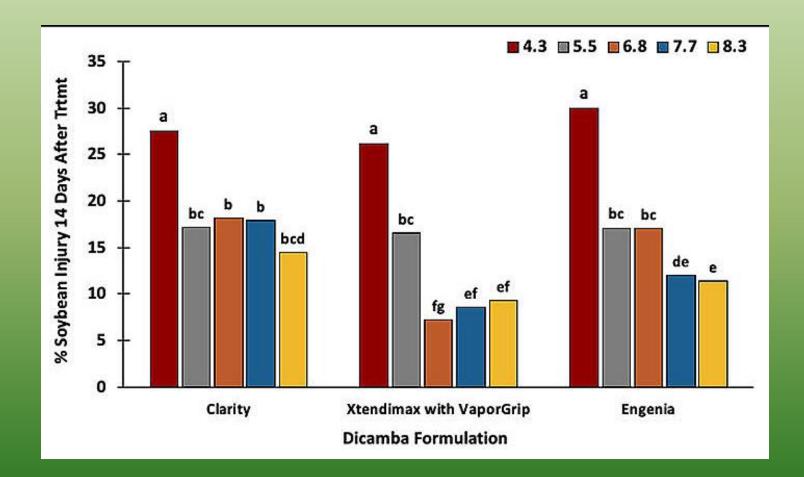


FIVE THINGS WE HAVE LEARNED ABOUT DICAMBA

Bradley and Bish: University of Missouri –Extension 9 April 2019

- 1. Dicamba can be detected in air following treatment
 - Nothing new, but dicamba products are volatile
 - Questions remaining are:
 - How much volatility results in off-target injury?
 - Can we do anything to minimize off-target injury?
 - Highest concentrations occur in first 8 hours post application and up to 72 hours
 - Higher concentrations in evening hours during stable conditions favoring temperature inversions

Figure 1: Dicamba air concentrations following application during evening, inverted air temperature conditions (**black bars**) and daytime, non-inverted air temperatures (**gold bars**).

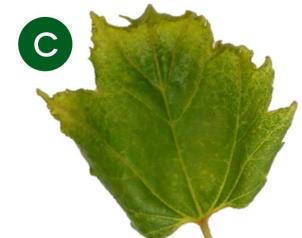

• 2. Addition of glyphosate and spray tank pH matters

- Lowers pH of spray solution
- With low pH, dicamba may dissociate to acid form which is the most volatile form
- Avoid a spray mix of less than 5

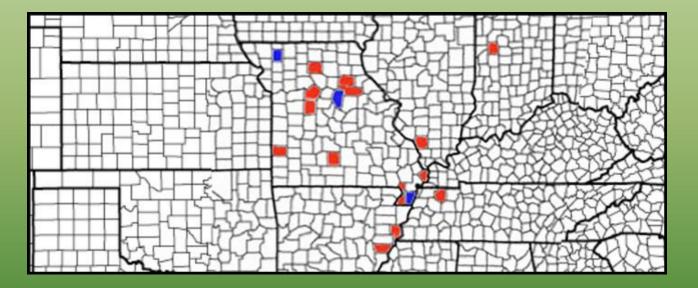
• 3. Soil pH matters

- The lower the soil pH the more volatility occurs with dicamba formulations
- May be an important piece of the over all puzzle

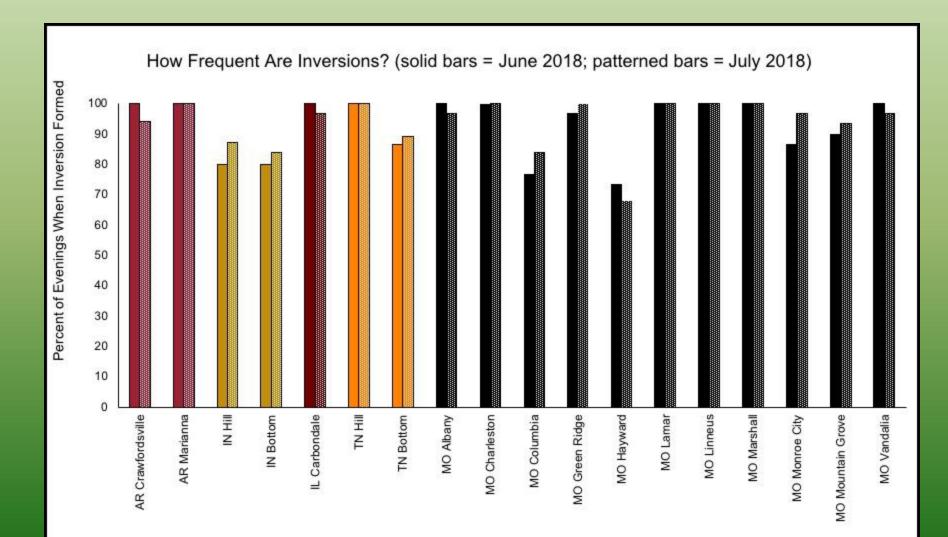
Figure 2: Influence of soil pH and dicamba formulation on soybean injury as a result of volatility. Results are combined across two experiments conducted in 2018. Bars followed by the same letter are not different.


Figure 3: Response of peach **(A)**, **pin oak (B)**, **maple (C)**, **elm (D)**, **and grape (E)** to 1/20th of the standard use rate of dicamba (0.025 lb ae/A) or dicamba + glyphosate (0.025 + 0.05 lb ae/A). This rate is representative of what can occur during a physical drift event.

• 4. Temperature inversions are common


- Can occur from April to July
- Begin forming before sunset
 - April: 5:00 and 6:30 pm
 - June: 6:00 and 7:00 pm

May: 5:30 and 6:50 pm


July: 6:00 and 8:00 pm

- Field surrounding influence time of inversions
 - Form more quickly and earlier in areas where wind is obstructed
- Cool air will gravitate to the lowest point in a field
- Dicamba may move with cool-stable air masses
- Dicamba can be detected in air following applications during inverted air temperatures
- Smoke bombs are good indicators of inversions

Figure 1: Network of inversion monitoring stations that are tracking inversions at heights relevant to ground pesticide applications. **Counties in blue** indicate the 3 original inversion monitoring stations which were equipped in 2015. **Counties in red** indicate newer inversion monitoring stations that went online in 2017 and 2018.

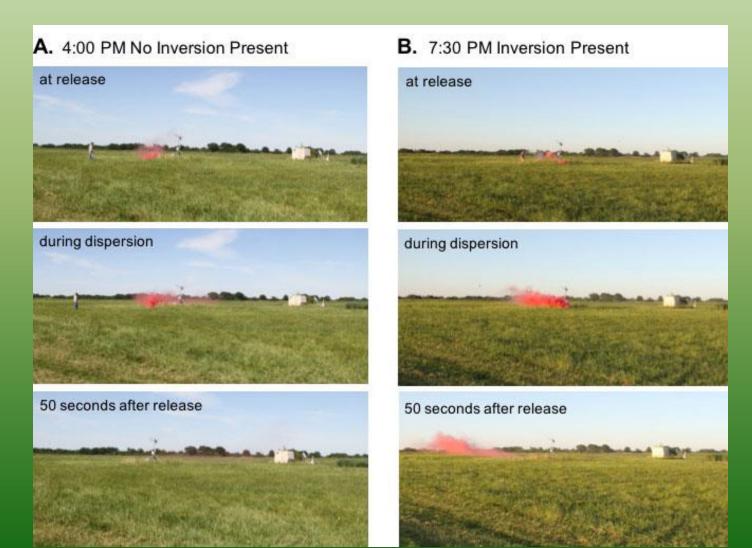

Figure 2: The percent of evenings in June and July of 2018 that inversions formed. An inversion was defined as air temperature at 18" being cooler than air temperature at 120".

Figure 3: Obstructions to wind can result in inversions forming more rapidly. In this example the **star** marks the location of the inversion-monitoring weather station. A tree row 125' to the south of the weather station provides obstructions to the prevailing southern wind. Inversions typically form earlier at this location compared to other sites.

Figure 5 Smoke bombs can serve as visual indicators of inverted air temperatures. When temperatures are not inverted **(A)**, the smoke bomb dissipates. When air temperatures are inverted **(B)**, the red smoke lingers and suspended particles can be moved by wind. The weather station monitoring the air temperatures is in the middle of each photo as a height reference; it is 120" in height.

• 5. Burndown applications of dicamba products can still cause problems

- These herbicides are **less likely** to move off-target and cause injury when applied as a burndown in April and May
- In 2018, more calls and complaints were received in April and May injury to specialty crops and trees than at any other time during the season
- Damage appeared to coincide with bud break and leaf unfolding (i.e. April and May) for many tree species

END OF PRESENTATION