LEAF-FEEDING INSECT PESTS OF WOODY PLANTS

IDENTIFICATION, BIOLOGY, AND MANAGEMENT

Introduction

Pest Identification

Pest significance

Pest Biology

Pest Management

Leaf-Feeing Insect Pests

"Webs and Tent-Makers"

Consumers

Skeletonizers

Leaf-Feeding Insect Pests

DLeafminers

Notchers

Eastern Tent Caterpillar

Preferred hosts:

- Crabapple
- Peach
- Plum
- Cherry

Overwinters as egg mass

Appears in early spring

Eastern Tent Caterpillar

Tents form in main branch crotches

One generation/year

Completely defoliation may result

Pest Management

Prune out tents early

Chemical insecticides

Fall Webworm

Form webs on branch tips

Broad host range

Common in late summer

Fall Webworm

One generation/year

Larvae are hairy and straw colored

Pest Management

Prune out webs

Chemical insecticides

Mimosa Webworm

Host specific on honeylocust

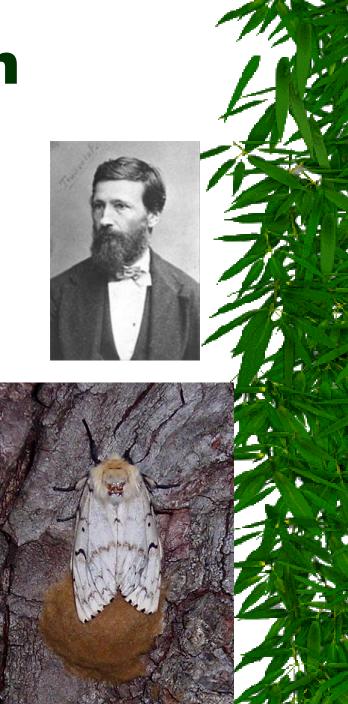
Two generations/year

Overwinters as pupa

Mimosa Webworm

Webs the leaflets together

Complete tree defoliation may result


Spongy Moth

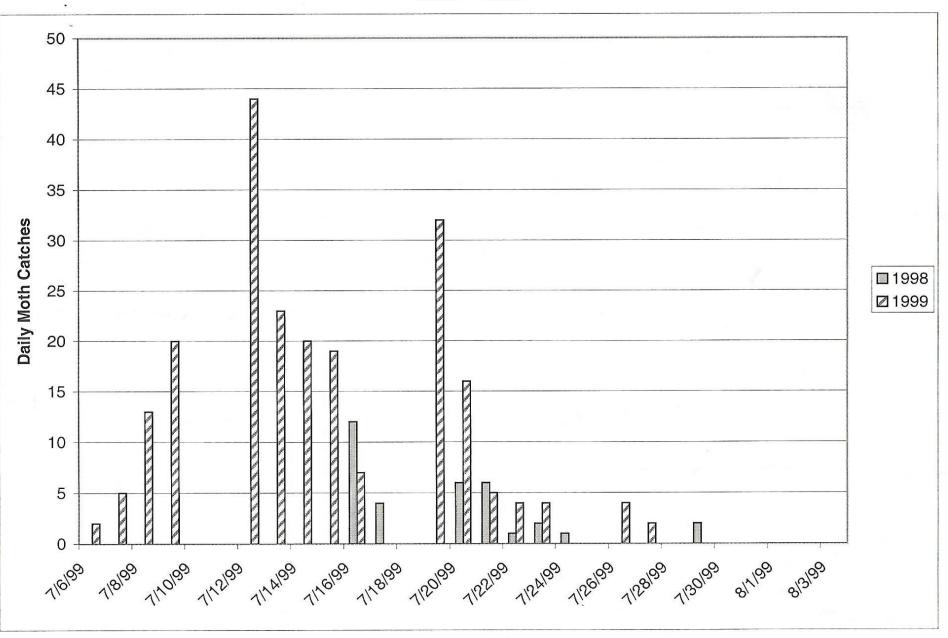
Entered the U.S. in late 1860's from Europe

Major defoliator of forest and shade trees

Preferred host is oak

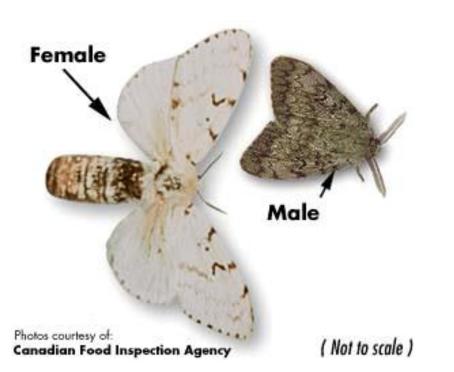
Overwinters as egg mass

Spongy Moth Life Cycle



Spongy Moth Larvae

Larvae are hairy Have 6 pairs of red dots and 4 pairs blue dots on back

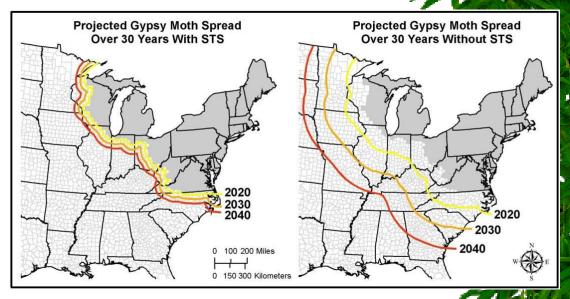


Adult Male Gypsy Moth Catches The Morton Arboretum 1998 - 1999

Spongy Moth Adults

One generation per year

"Early Slow the Spread Program"

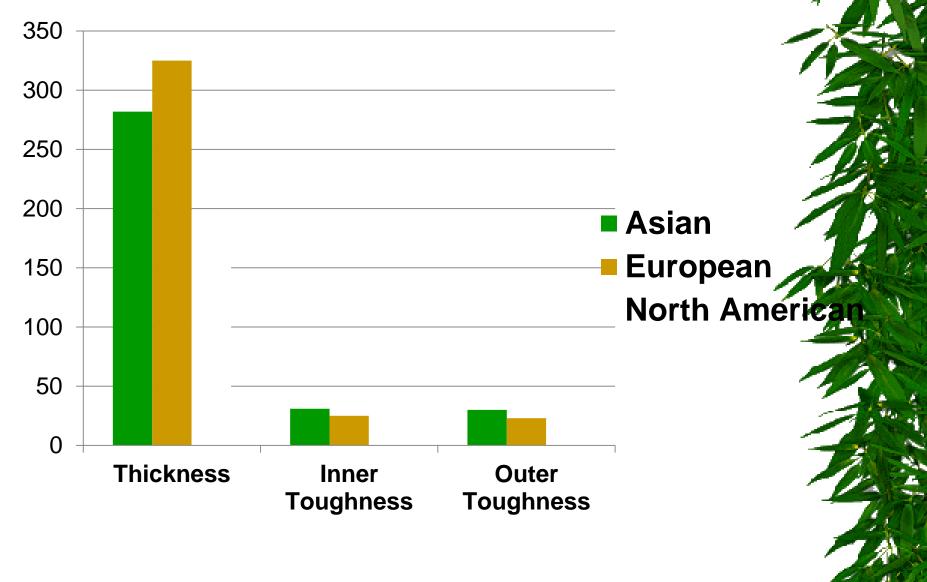


Spongy Moth Slow the Spread (STS) Program

Spongy Moth STS in Illinois

Spongy Moth Management

- Populations somewhat regulated by cultural and biological controls
- Sprays with pheromone flakes
- Chemical sprays are used during outbreaks
- Host Plant Resistance (HPR) or use of less susceptible tree species


Leaf thickness, leaf toughness of Asian, European, and North American Elms

Таха	Thickness ¹ (microns)	Inner Toughness (g	Outer) Toughness (g)
Asian ²	282b	30.7b	29.7b
European ²	325b	24.9a	23.3a
North American	198a	25.3a	20.7a
Significance:	F=70.0 P<0001	<i>F</i> =31.1 <i>P</i> <0.001	F=39.1 P<0.001

¹Values within a column followed by the same letter are not significantly different (P<0.05; Dunn's Test).

²Includes simple and complex Eurasian hybrids

Leaf thickness and toughness of Asian, European, and North American Elms

Hornbeams (*Carpinus*) less susceptible to feeding by Spongy Moth and Japanese Bee (Dirr, 2009)

Japanese Beetle

- Yeddo Hornbeam (Carpinus tschonoskii)
 American x Korean Hornbeam hybrid
 - (Carpinus caroliniana x C. coreana)

Spongy Moth

- Morean Hornbeam (C. coreana)
- 👁 C. fargesii
- Loose-flower Hornbeam (C. laxiflora)
- American x Oriental Hornbeam hybrid
 - (C. caroliniana x C. orientalis)

Elms less susceptible to feeding by Spong Moth and Japanese Beetle (Dirr, 2009)

Japanese Beetle

- 'Frontier' 'Homestead'
 'Pioneer' 'Patriot',
 - 'Prospector'

- 'New Horizon 'Accolade
- 'New Harmony'
- In U. parvifolia Z. serrata ('Green Valley' and 'Village Green')

Spongy Moth

friumph'

'Liberty'

- 'Frontier' 'Homestead' 'New Horizon'
 'Pioneer' 'Patriot' 'Regal'
 'Triumph' 'Vanguard' 'Jefferson'
 - Zelkova serrata, schneiderana, sini

European Pine Sawfly

Preferred hosts are Scots and mugho pines

Larvae resemble caterpillars

European Pine Sawfly

Consume the entire needle

Eat last year's growth



Feeding Damage

One generation/year

Severe defoliation is possible

Pest Management

Remove larvae by hand-picking

Chemical treatment is most effective

Leaf Beetles

Both larvae and adults feed on leaves
 Adults chew holes in the leaves
 Larvae "windowpane" the leaves

Leaf Beetles

Hosts include willow, poplar, viburnum, and elm Multiple generations per year

Leaf Beetles

Overwinter as adults in protected sites

Heavily defoliated trees will appear scorched

Pest Management

Host plant resistance

Chemical insecticides

Trunk banding

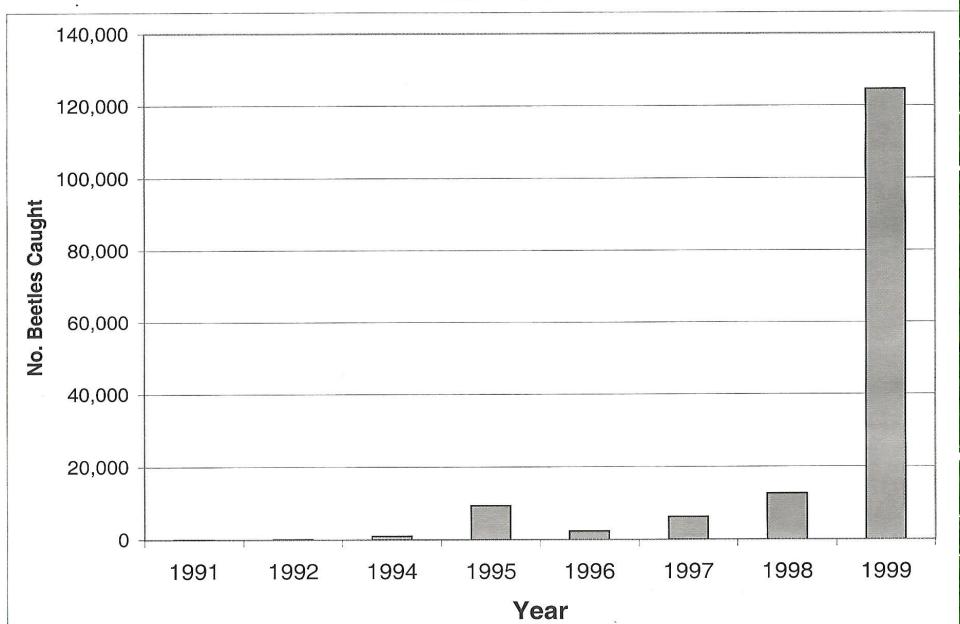
Biological control

Japanese Beetle

Broad host range

Prefers hosts are Rose family, lindens, elms, and grape

Adults skeletonize the leaves



Japanese Beetles The Chicago Botanic Garden 1995 - 1999

Year	Date First Beetles Caught	Degree Days	Date of Peak Catch	Degree Days
1995	3-Jul	984	17-Jul	1375
1996	8-Jul	819	9-Aug	1474
1997	9-Jul	822	23-Jul	1162
1998	19-Jun	749	24-Jul	1605
1999	21-Jun	763	21-Jul	1479.5

Adult Japanese Beetle Catches The Chicago Botanic Garden 1991 - 1999

Feeding Damage

777

Japanese Beetle

Overwinters as a grub

Grub feeds on turf roots

One generation/year

Adults active for 6-8 weeks

Pest Management

Host plant resistance

 Leaf chemistry and morphology may play a role

Chemical insecticides

- Conventional insecticides
- Bio-rational insecticides

Pest Management

Hand-picking (Switzer and Cumming, 2014)

- Most effective for small-scale management
- Most effective in evening
- Reduces positive feedback between existing and future beetles
- Female with heavy egg loads more likely to initiate aggregation
- Males and females with lower egg loads join existing aggregations

Biological Control (Behle and Goett, 2016)

 Fungus *Metarhizium brunneum* was found to be effective against beetles grubs and adult beetles

Less Preferred Hosts

- Acer negundo
- Acer rubrum
- Acer saccharinum
- 🗈 Carya ovata
- De Euonymus spp.
- 👁 Fraxinus americana
- Fraxinus pennslyvanica
- Juglans cinerea
- Liriodendron tuliperfera
- *Magnolia* spp.

Less Preferred Hosts

- 👁 Morus rubra
- 🗈 Populus alba
- Pyrus communis
- 👁 Quercus alba
- Quercus rubra
- Quercus velutina
- *Rhododendron* spp.
- Syringa vulgaris
- Abies spp.
- 🗈 *Taxus* spp.
- De Pinus spp.
- *Picea* spp.

Preferred Hosts

Acer palmatum Acer platanoides Detula populifolia Hibiscus syriacus Juglans nigra Platanus acerifolia Depulus nigra

Preferred Hosts

- Der Rosa spp.
- Sassafras albidum
- Sorbus americana
- 🗈 Tilia americana
- 👁 Ulmus americana
- Ilmus procera
- *₫ Vitis* spp.

Japanese Beetle Traps

Leafminers

Usually host specific
 Larvae mine the areas between the upper and lower leaf surfaces
 Mines appear as blotch or serpentine
 Usually causes aesthetic damage

Leafminers

May have one or two generations/year
 Usually overwinter as larvae or prepupae
 Chemical management is the most effective

treatment

Leafminers on Oak, Elm, and Arborvitae

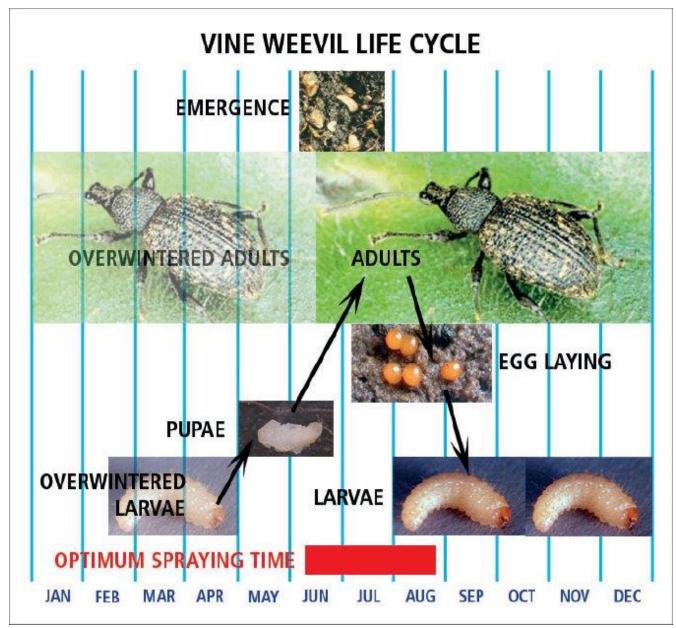
"Notchers"

Black vine weevil

- Adults notch leaf margins
- Adults feed at night
- Adults not able to fly
- Reproduces parthenogenetically
 No males in the population

"Notchers"

Black vine weevil Larvae feed on roots


- One generation per year

Black Vine Weevil Lifecyle

Management of BVW

- Chemical insecticides
- Sanitation

- Larvae controlled using entomopathogenic nematodes (EPNs)
 - Steinernema feltiae
 - Heterorhabditis bacteriophora
- Study with EPNs on strawberries showed that EPNs controlled BVW for up to 4 years
- Portable listening devices used for insect detection in containers

"Notchers"

Leaf-cutter bees

- Harmless, no control needed
- Cut U-shaped notches in leaf margins
 1/4-1/2 in.
- Use leaf portions for nesting

SUMMARY

Leaf-feeding insects rarely kill plants

Defoliation of evergreens can be lethal

Healthy plants can tolerate low to moderate defoliation

SUMMARY

Repeated heavy defoliation events may lead to: Stress, Decline, and Death

Chemical management can be effective

Plant Health Care (PHC) should be an integral part of the management plan

