

SOIL AND THE HYDROLOGIC CYCLE

THE HYDROLOGIC CYCLE

 Cycling of water from earth's surface to the atmosphere and back again

THE HYDROLOGIC CYCLE

Cycle is driven by solar energy
 1/3 of energy stimulates evaporation

Water vapor rises to form clouds

 Water vapor condenses into liquid in the form of rain and snow

FATE OF PRECIPITATION AND IRRIGATION WATER

- Interception by plants (30-60%)
- Infiltration down movement in soil profile

 Surface runoff – water moving along the soil surface

FATE OF PRECIPITATION AND IRRIGATION WATER

Drainage – downward movement and lost from root zone

Capillary rise – upward movement of water back up into plant-root zone

Soil storage water – water retained by the soil

FACTORS AFFECTING WATER PARTITIONING

Timing of precipitation

Type of vegetation

Stem flow

Soil management

Soil properties

TWO POINTS OF RESISTANCE

Factors determining whether plants are supplied with water:

 Rate at which water is supplied to absorbing roots

 Rate at which water is evaporated from plant leaves

Evaporation component is considered a "waste" from a plant production view

Transpiration helps the plant by:

- Cooling
- Nutrient transport
- Photosynthesis
- Turgor maintenance

Potential ET – rate at which water vapor would be lost from a densely vegetated plant-soil system if water is maintained at an optimal level

Potential ET is determined by:

- Temperature
- Cloud cover

Relative humidity Wind speed

MEASURING PET PET = 1500 mm/yr. for dry regions PET = 40 mm/yr. in very cold regions PET < 1mm/yr. in temperate regions</p> (winter)

PET = 10-12 mm/day with hot, dry winds Effect of Soil Moisture
 Upper 15-25 cm of soil provides most of water for surface evaporation

 Water lost via evapotranspiration (ET) comes from subsoil layers

Important for plants in Ustic or Xeric moisture regimes

Plant water stress ET = PET when soil moisture is optimum ET < PET the plant will experience water stress

Water deficit is the difference between PET and ET

 Influence of plant characteristics
 Leaf area index (LAI) – leaf area per unit land area

 As LAI increases, more radiation will be absorbed by the foliage to stimulate transpiration (T) and less will reach the soil for evaporation (E)

Climatic conditions

Plant cover related to soil surface (LAI)

Water use efficiency by the plants

Length and season of growing period

CONTROL OF EVAPOTRANSPIRATION Addition of water by irrigation

Limit plant growth factors

Reduce LAI lower plant populations per unit area and plant spacing

CONTROL OF EVAPOTRANSPIRATION

Eliminate weeds

Elimination of all plants to recharge soil moisture levels

CONTROL OF SURFACE EVAPORATION (E)

 Nearly 50% of precipitation in arid and semiarid areas is lost to E

 Mulches and certain tillage practices can help reduce E

VEGETATIVE MULCHES

Reduce spread of soil-borne diseases

Clean path for foot traffic

Reduces weed growth

Moderates soil temperatures

VEGETATIVE MULCHES

Increases water infiltration

Provides organic matter

 Encourages earthworm populations

Reduces soil erosion

PERCOLATION-EVAPORATION BALANCE

Percolation water recharges groundwater supplies and moves chemicals out of the soil

Runoff water carries soil and dissolved chemicals off site

PERCOLATION LOSSES

 Amount and distribution of rainfall

Runoff from the soil

Evaporation

Character of soil

Vegetation

PERCOLATION AND GROUNDWATER Water table – upper surface of the zone of saturation • Humid areas: within 1-10 m. Arid areas: 200 m. • Swamps: at land surface Groundwater – water within the saturated zone Acquifers – porous geological materials Capillary fringe – zone of wetting by capillary movement

PERCOLATION AND GROUNDWATERS

Leaching – removal of materials in solution from soil by percolating waters

- Elements weathered from minerals
- Natural organic compounds
- Plant nutrients
- Synthetic chemicals

PERCOLATION AND GROUNDWATERS Downward movement of nitrogen Leads to eutrophication • Oxygen content is depleted • Water supplies are contaminated Contamination of human water supplies with pathogens and pesticides

Biological Effects of Eutrophication

Phosphorus fertilizes small floating aquatic plants.

Light pend ratidiris reduced?

Sunlight

Reduced submarged aquatic vegetation (SAV)

Hosokosoft

Plants die off When they decompose, the water becomes depieted in oxygen.

Some animals die because of lack of oxygen

CHEMICAL MOVEMENT THROUGH MACROPORES
Old root channels
Earthworm burrows
Clay shrinkage cracks

Remember: Once chemicals pass through areas of greatest root and microbial activity they are less likely to be broken down

PREFERENTIAL/BYPASS FLOW

Water that flows down through large pores with minimal contact with soil

 Intensity of rain or irrigation
 Bypass flow is greatest during highintensity rainfall and/or irrigation events that follow a dry period (Table 6.3) CHEMICAL MOVEMENT THROUGH MACROPORES
 Human activity that affects the hydrologic cycle:
 Use of artificial drainage

 Application of additional water via wastewater disposal

Use of irrigation

SUBSURFACE (INTERNAL) DRAINAGE SYSTEMS

Designed to remove groundwater from within the soil and lower the water table

Remember: Internal drainage will occur only when the pathway for drainage is located below the water table level

SUBSURFACE (INTERNAL) DRAINAGE SYSTEMS

Buried
 perforated pipe
 or drain tiles

 Building foundation drains

SPRINKLER SYSTEMS

Simulates rainfall

Advantage: plants respond better to the cooling effect

SPRINKLER SYSTEMS

Disadvantage: Wet foliage promote foliar leaf diseases

SPRINKLER SYSTEMS

Water control

- Water delivery rate must be compatible with soil infiltration rate
- FEW is usually higher for sprinkler systems
- Suitable soils
 - Practical on a wide range of soils

MICROIRRIGATION

Most efficient system

Also know as drip (trickle) irrigation

Other forms include:
 Spitters (microsprayers)
 Bubblers (small vertical standpipes)

MICROIRRIGATION

Water Control

 Helps facilitate application of fertilizers and pesticides (chemigation)

High maintenance in temperate climates

MICROIRRIGATION

- Equipment
 Higher initial capital investment (Table 6.5)
 - More profitable where water is scarce and on high value crops (i.e. fruit trees)

PULSE IRRIGATION

- Practice of splitting irrigation intervals into smaller increments
 Reduces the amount of water applied by irrigating in smaller increments that can be used more effectively by plants
 - Eliminates larger increments that may produce excessive leach rates and runoff

IRRIGATION WATER MANAGEMENT

Salinity buildup

 Can cause a buildup of salts in the irrigation water and groundwater supplies

RECYCLING IRRIGATION WATER

 Helps eliminate runoff into sewage and storm water systems

Can be blended with fresh water for re-use

 Use qualified engineers for design and implementation

RECYCLING IRRIGATION WATER

Options for water re-use and/or treatment will depend on:
 pH EC

• Nitrates Phosphates

• Pesticides

RECYCLING WATER IN AN URBAN SETTING

END OF PRESENTATION