INTRODUCTION

Plant growth is closely related to soil physical properties

- □ Soil texture
- □ Soil structure

SOIL COLOR

Soil colors help explain the behavior and use of soils

- Munsell color system standard system for accurate color description
 - Hue redness or yellowness
 - Chroma intensity or brightness (0=gray)
 - Value lightness or darkness (0=black)

CAUSES OF SOIL COLOR

□ Organic matter

Dark brown to black

CAUSES OF SOIL COLOR

□ Water

- Wet soils darker than dry soils
- Gray and bluish colors (low chroma)

CAUSES OF SOIL COLOR

- Presence and oxidation state of iron and manganese oxides
 - Iron reds and browns (high chroma)
 - **Manganese** black
 - Glauconite green
 - Calcite white

SOIL TEXTURE

□ Soil separates

JAR TESTING FOR SOIL TYPE

SOIL TEXTURE

- \square **Coarse fragments** ->2 mm. in diameter
 - Gravels (2 75 mm)
 - Cobbles (rounded) (75-250 mm)
 - Flags (flat)
 - Boulders (> 250 mm)

COURSE FRAGMENTS

SAND

- \square 0.05 2 mm. in diameter
- □ Rounded or angular
- □ Feels gritty
- Particles are visible
- Free drainage of water and entry of air
- □ Low specific surface area
- Prone to drought

SILT

- \square 0.002 0.05 mm. in diameter
- □ Not visible to the naked eye
- Feels smooth or silky, but not gritty
- Quartz is dominant
- □ Fertile
- □ Good water retention
- □ Not sticky or plastic when wet

CLAY

- \square <0.002 mm in diameter
- Poorly drained
- Movement of air and water is slow
- Sticky or plastic when wet
- □ Very fertile
- Easily compacted

SOIL TEXTURE

- □ Textural classes convey:
 - Size distribution of particles in soil
 - General physical properties of that soil
- □ 12 major textural classes

SOIL TEXTURAL CLASSES

- □ Loam mixture of sand, silt, and clay in equal proportions
 - Sandy loam Silt loams
 - Silty, clay loams

Sandy, clay loams

Clay loams

THE "FEEL" METHOD

Rubbing a soil
sample between
thumb and fingers

- Important fieldtechnique for:
 - Soil surveys
 - Land classification
 - Soil texture

THE "RIBBON TEST"

SOIL STRUCTURE

Structure – arrangement of primary soil particles into groupings called aggregates or peds

INFLUENCE OF STRUCTURE ON MINERAL SOILS

□ Water movement

□ Heat transfer

□ Aeration

□ Soil porosity

STRUCTURE OF MINERAL SOILS

SpheroidalPlaty

STRUCTURE OF MINERAL SOILS

- Prism-like
- Block-like
- □ No structure

DESCRIBING SOIL STRUCTURE

- □ Size
- □ Fine

□ Medium

□ Coarse

SOIL PARTICLE DENSITY

The mass per unit volume of soil solids or specific gravity of a solid

Does not include soil volume which includes spaces between particles

SOIL BULK DENSITY

- Mass of a unit volume of dry soil and includes both solids and pores
- Methods for determining bulk density
 - Drying and weighing
 - Using a coring instrument

Comparison of Bulk Density and Particle Density

In a soil profile, one cubic centimeter (1.0cm³) appears like this:

It contains solids and pore spaces, and the whole cm³ has a mass of 1.32g.

To calculate Bulk Density of the soil:

Volume = 1.0cm³ (Solids and Pores) Mass = 1.32g (Sieved Solids only)

Bulk Density

Mass of Dry Soil

Volume of soil (Solids and Pores)

Therefore:

$$\frac{\text{Bulk}}{\text{Density}} = \frac{1.32}{1.0} = 1.32 \text{ g/cm}^3$$

If all the solids were compressed to the bottom, the cube would now look like this:

SAMPLING FOR BULK DENSITY

Lower bulk density Lower weight More pore space

Higher bulk density Higher weight Less pore space

RELATIONSHIP OF SOIL BULK DENSITY TO ROOT GROWTH BASED ON SOIL TEXTURE

SOIL TEXTURE	IDEAL BULK DENSITIES FOR PLANT GROWTH (g/cm ³)	BULK DENSITIES THAT RESTRICT ROOT GROWTH (g/cm ³)
Sandy	<1.60	>1.80
Silty	<1.40	>1.65
Clayey	<1.10	>1.47

BULK DENSITIES AS A FUNCTION OF SOIL TEXTURE

TEXTURE	IDEAL BD (gm/cm3)	MAY EFFECT ROOT GROWTH	RESTRICTS ROOT GROWTH
Sands and loamy sands	<1.60	1.69	>1.80
Sandy loam, loams	<1.40	1.63	>1.80
Sandy clay loams, clay loams	<1.40	1.60	>1.75
Silts, silt loams	<1.30	1.60	>1.75
Silt loams, silty clay loams	<1.40	1.55	>1.65
Sandy clays, silty clays	<1.10	1.49	>1.58
Clays	<1.10	1.39	1.47

EFFECTS OF SOIL COMPACTION

EFFECTS OF SOIL COMPACTION

FACTORS AFFECTING BULK DENSITY

□ Pore space

Soils with greater pore space have lower bulk density

□ Soil texture

Fine textures soils have lower bulk densities than sandy soils

□ Depth in soil profile

Compacted soils have BD's > 2.0 mg/m³

MANAGEMENT PRACTICES AFFECTING BULK DENSITY

□ Forest lands

 Very sensitive to increases in BD

Urban areas

п

 Involved severely compacted soils

MANAGEMENT PRACTICES AFFECTING BULK DENSITY

Maximum depth of 3 to 4 inches

MANAGEMENT PRACTICES AFFECTING BULK DENSITY

Landscapes

- Mowing and vehicle traffic can increase bulk density
- Plow pan (traffic pan) dense zones just below plow level
- **Sub-soiling** used to break up plow pan layers
- **Core aerifying** helps breaks up surface soils

SOIL STRENGTH

- Soil strength soil property that causes it to resist deformation
 - Measured using a penetrometer

Higher in dry soils

TYPES OF PORES

$\square Macropores > 0.08 mm.$

- Allow ready movement of air and water drainage
- Accommodate plant roots and tiny animals
- Found between peds (interped pores)

□ **Micropores** < 0.08 mm.

- Filled with water
- Too small to permit air movement
- Water retained in these pores is unavailable to plants

TYPES OF PORES

Biopores – created by roots, earthworms, and other organisms

SOIL AGGREGATES

- □ Large structural **aggregates** provide for:
 - Low bulk density
 - High proportion of macropores

 Smaller aggregates are more stable than larger ones

MACRO-AGGREGATES

BIOLOGICAL PROCESSES IMPACTING AGGREGATES

□ Earthworms

□ Roots and fungal hyphae

Organic glues produced by micro-organisms

□ Organic matter

TILLAGE AND SOIL TILTH

□ **Tilth** – the physical condition of the soil in relation to plant growth

□ Soil tilth depends on:

- Aggregate formation and stability
- Bulk density
- Degree of aeration
- Drainage

Soil moisture content

Rate of water infiltration

Capillary water capacity

GUIDELINES FOR MANAGING SOIL TILTH

- □ Timing of traffic activities
- Mulching soil surface
- Applying gypsum

END OF PRESENTATION