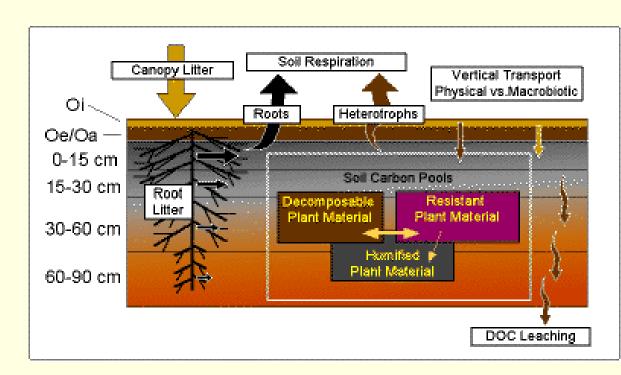
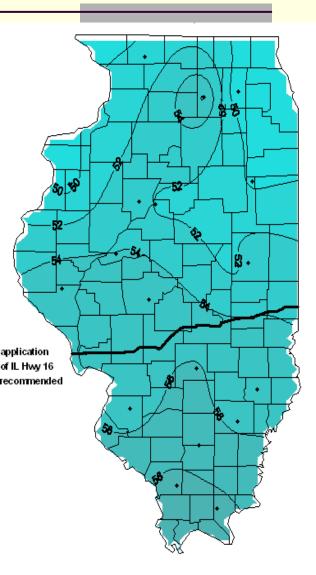

SOIL AERATION AND TEMPERATURE



INTRODUCTION

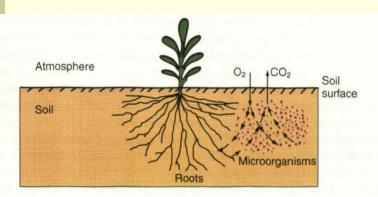
Aeration is directly impacted by soil:

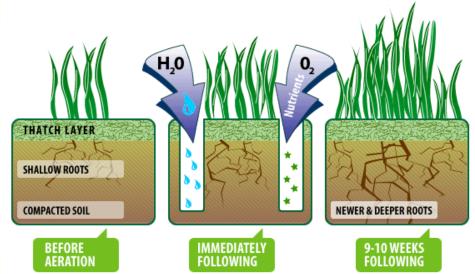
- Texture and structure
- Porosity, water movement and retention


Microbes

INTRODUCTION

Soil temperature affects:

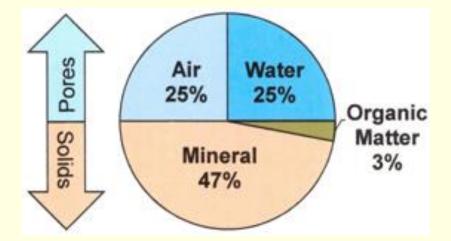

- Plant growth
- Growth of microbes
- Soil drying
- Soil aeration
- Physical and chemical properties


THE PROCESS OF SOIL AERATION

Aeration involves:

- Ventilation of the soil
- Gas movement into and out of the soil
- Determines the rate of gas exchange

Fig. 5.14. Soil aeration is primarily a process of O_2 and CO_2 exchange between the air phase of the soil and the external atmosphere.

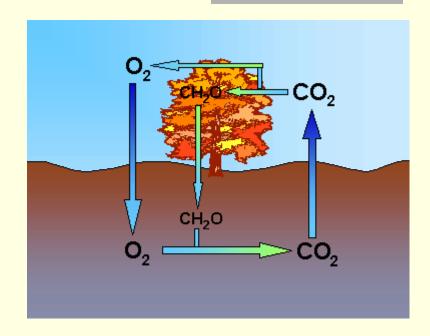


AERATION INVOLVES

Proportion of pore spaces filled with air

Composition of soil air

Oxidation/reduction potential



THE PROCESS OF SOIL AERATION

Aeration requires:

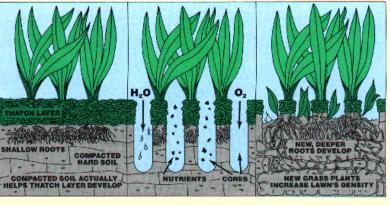
Supply oxygen

Removal of CO₂

Balance between O₂ and CO₂ in wellaerated soils

AERATION REQUIREMENTS FO UPLAND PLANTS

- Upland plants require O_2 in soil air = 0.1L/L
- \blacksquare O₂ levels in atmosphere = 0.2L/L
- Methane and ethylene must not build up



REGULATION OF AVAILABLE OXYGEN

Soil macro-porosity

- Affected by texture and structure
- Soil water content
 - Affected by proportion of porosity filled with air

O₂ consumption by respiring organisms

BEFORE

MMEDIATELY FOLLOWING

FOLLOWING

SOIL AERATION IN THE FIELD

Poor soil aeration refers to a condition in which the availability of O₂ in the root zone is insufficient to support optimal growth of plants and microorganisms

SOIL AERATION IN THE FIELD

Problem when 80-90% of pore space is filled with water

Provides little pore space for air

EXCESS MOISTURE HAMPERS SOIL AERATION

Block pathways for gas exchange with atmosphere

Compaction has the same effect, even if soil is not wet

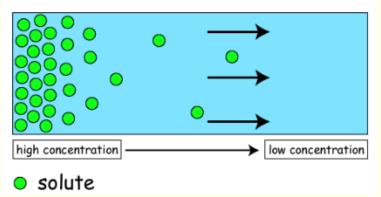
EXCESS MOISTURE

- Water saturated or waterlogged nearly all soil pores are filled with water
 Wetlands
 - Depressions
 - Flat areas on upland sites

Well-drained areas with excessive water

HYDROPHYTIC PLANTS

- Plants adapted to live in waterlogged soils
 - Rice
 - Eastern gamma grass
 - Marsh grass
 - Bald cypress
 - Mangroves



GASEOUS INTERCHANGE

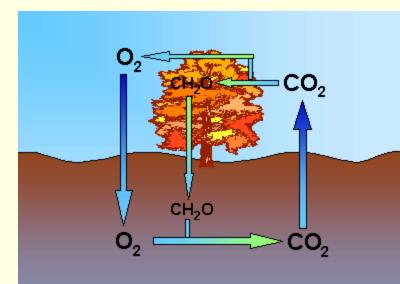
Mass flow – movement of air

- Enhanced by fluctuations in soil moisture Changes in barometric pressure
- Not as important as diffusion
- Diffusion movement of atoms in a gaseous mixture due to random motion
 - Gases move in direction based on its partial pressure

 Diffusion

PARTIAL PRESSURE OF A GAS

The pressure a gas would exert if it alone were present in the volume occupied by the mixture


Example:

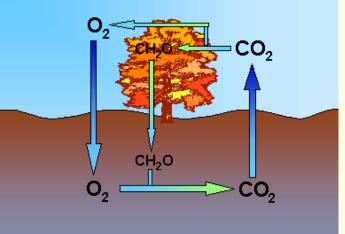
- If pressure of air = 1 atmosphere
- And O₂ makes up 21% of air by volume
- Then the partial pressure of $O_2 = 21$ kPa

GASEOUS INTERCHANGE

Oxygen will move from atmosphere to soil

Carbon dioxide and water vapor move from soil to atmosphere

GASEOUS COMPOSITION OF SOIL AIR


Oxygen

- Atmosphere: 21% O₂; 0.035% CO₂; 78% N₂
- Soil air: < 21%O₂; > 0.035% CO₂; 78%
 N₂
- Anaerobic lack of oxygen in soil environment

GASEOUS COMPOSITION OF SOIL AIR

Carbon dioxide
 Atmosphere: 0.035% CO₂
 Soil air: 0.35%CO₂

When CO₂ levels reach 10%, it may be toxic to plants

GASEOUS COMPOSITION OF SOIL AIR

Soil water vapor is higher in the soil than atmosphere

Methane and hydrogen sulfide higher in waterlogged soils

Ethylene can be toxic to plant roots

AIR-FILLED POROSITY

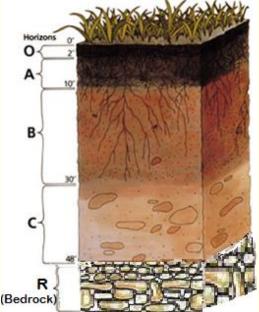
Microbial activity and plant growth are severely inhibited when:

Air-filled porosity < 20% of pore space or 10% of total soil volume

Oxygen diffuses 10,000 times faster through air-filled pores than waterfilled pores

SOIL AERATION

"Soil aeration helps determine the specific chemical species present and, in turn, the availability, mobility, and possible toxicity of various soil elements"


RATES OF RESPIRATION

- Oxygen and carbon dioxide levels are dependent on microbial activity
- Incorporation of organic matter affects respiration rates
- Plant root respiration
- Respiration rates increase with temperature

SOIL HETEROGENEITY

Subsoils more oxygen deficient than topsoils

Total pore space is lower in deeper horizons

SOIL HETEROGENEITY

Profile

Oxygen decreases and carbon dioxide increases as you move down the profile
 Tillage

Short term may increase aeration

Long term my reduce macro-porosity

SEASONAL DIFFERENCES

Oxygen exchange is low in spring Soils are wetter and cooler

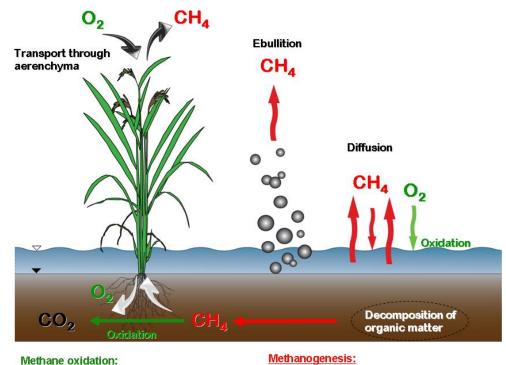
Gas exchange is higher in summer Soils are dryer and warmer

ECOLOGICAL EFFECTS OF SOIL AERATION

- Rate of breakdown of organic matter
 - Slower in poorly drained soils
 - Build up of gases which can be toxic to plants

ECOLOGICAL EFFECTS OF SOIL AERATION

Soil colors


Well-oxidized soils are red, yellow, and reddish brown

 Streaked soils indicate lack of uniform drainage

METHANE PRODUCTION IN SOILS

Produced by a reduction of CO₂ Common in wetlands and rice paddies

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

Hydrogenotrophic: $CO_2 + 4H_2 \rightarrow 2H_2O + CH_4$ Acetotrophic: $CH_3COOH \rightarrow CO_2 + CH_4$

AERATION AND SOIL AND PLANT MANAGEMENT

- Container grown plants suffer from overwatering
 - Mineral soil makes up about 1/3 of potting mixes

Young trees and newly transplanted trees must be protected from water-logging

AERATION AND SOIL AND PLANT MANAGEMENT

Adding fill to mature tree root zones can result in suffocation

Compacted areas due to foot traffic may need to be core aerified

SOIL TEMPERATURES

PROCESSES AFFECTED BY SOIL TEMPERATURE

- Physical, biological, and chemical processes
- Most plants have a narrow range of soil temperatures that are optimum and affects:
 Yield Plant life cycles
 Plant growth Seed germination
- Vernalization period of cold temperature to stimulate germination or breaking of dormancy

Root functions

 Nutrient and moisture uptake are slowed in cool soils

Winter burn or physiological drought

Microbial processes

 Biological Zero: Temperature at which activity ceases (below 40°F)

Respiration doubles for each 10°C rise

Optimum range is 80 - 100°F

Freezing and thawing

- Alters physical structure of the soil
- Frost heaving forcing of objects upward in soil due to freezing and thawing
 - Silts and sands are more susceptible
 - Clay soils are less susceptible

ABSORPTION AND LOSS OF SOLAR ENERGY

- Solar radiation reaching earth is primary source to heat soils
 - Cloudy humid regions = 35-40% of solar radiation
 - Cloud-free arid areas = About 75% of solar radiation
 - Globally = About 50% of solar radiation

Absorbed solar radiation is about 10%

ABSORPTION AND LOSS OF SOLAR ENERGY

- Albedo fraction of incident radiation reflected by land surface
 - 0.1 0.2 for rough, dark colored surfaces
 - > 0.5 for smooth, light colored surfaces
 - Darkest soils are usually the wettest and slower to warm up
 - Aspect direction of slope
 - Rays hitting perpendicular to earth's surface will heat the soil faster

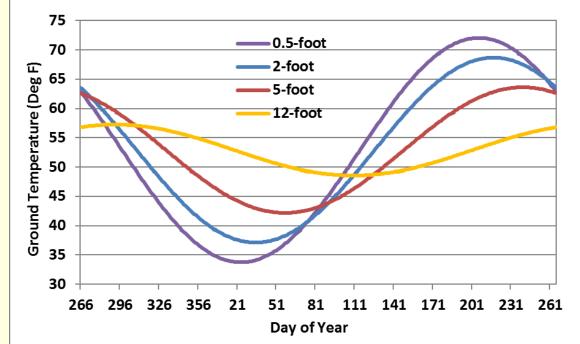
ABSORPTION AND LOSS OF SOLAR ENERGY

Soil cover

Bare soils warm more quickly and cool more rapidly than covered soils

Frost penetration is greater in bare soils compared to covered soils

MAXIMUM SOIL TEMPERATURES FOR FOUR TYPES OF SURFACES


SURFACE	MAX.TEMP.	MAX. TEMP.
	Day (°C)	Night (°C)
Turf	31 (88°F)	24 (75°F)
Dry, bare soil	39 (102)	26 (79)
Brown grass	52 (126)	27 (80)
Synthetic turf	70 (160)	29 (84)

THERMAL PROPERTIES OF SOILS

- Dry soils heat up more easily than wet soils
- Specific heat (heat capacity) heat capacity per unit mass
 - Pure water = 1.00 cal/g
 - Dry soil = 0.2 cal/g
- Heat of vaporization heat required to evaporate water from a soil surface
 - 540 kilocalories/kg
- Low temperature of wet soils in spring is due to evaporation and high specific heat

DAILY VARIATIONS

- Surface soil temperatures lag behind air temperature maximums
- Temperature change is less at greater soil depths
- Lower subsoils show very little daily and/or weekly fluctuations

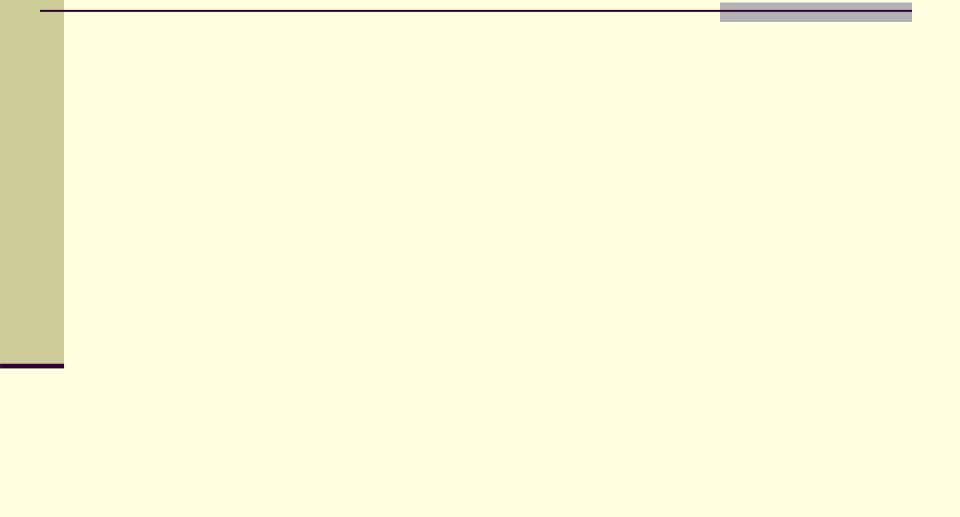
FACTORS AFFECTING SOIL TEMPERATURE CONTROL

Cover crops or mulch on the soil

Practices that reduce soil moisture

FACTORS AFFECTING SOIL TEMPERATURE CONTROL

- Organic mulches and plant residue management
 - Mulches buffer extremes in soil temperatures



Plastic mulches

 Used in vegetable production to increase soil temperature

END OF PRESENTATION

