NITROGEN AND SULFUR IN SOIL ECONOMY

"THE PULSE AND BODY OF THE SOIL"

IMPORTANCE OF NITROGEN AND ITS ROLE IN PLANT GROWTH

SHARED CHARACTERISTICS OF NITROGEN AND SULFUR

 Found primarily in organic forms
 Move in soil and into plants as anions
 Responsible for serious global environmental problems

 N deficiencies (i.e. chlorosis)

- N excesses (i.e. nitrates)

CHARACTERISTICS OF N

N is essential component of proteins

Proteins are nutritionally important

 Supplying N is a major expense in agricultural production

CHARACTERISTICS OF N

 Manufacturing N requires large amounts of fossil fuels

Soil generate nitrous oxide destroys ozone

NITROGEN CYCLE

NITROGEN AND PLANT GROWTH AND DEVELOPMENT
Integral component of:
Amino acids for building proteins and enzymes

-Nucleic acids (DNA, RNA)

- Chlorophyll (photosynthesis)

COMMON AMINO ACIDS

 NITROGEN AND PLANT GROWTH AND DEVELOPMENT
 Integral component essential plant compounds

 Use of carbohydrates

– Stimulates root growth

– Assists with uptake of nutrients

NITROGEN AND PLANT GROWTH AND DEVELOPMENT N deficient plants are chlorotic Stunted appearance Develop thin, spindly stems

NITROGEN AND PLANT GROWTH AND DEVELOPMENT

 Mobile (easily translocated) within the plant

Older tissues
 show chlorosis
 before younger
 tissues

NITROGEN AND PLANT GROWTH AND DEVELOPMENT

- Excessive N results in excessive vegetative growth
- Plant stems are enlarged, but weak
- Plants are prone to lodging

May delay plant maturity

NITROGEN AND PLANT GROWTH AND DEVELOPMENT

 Increases susceptibility to diseases and insects

 Degrades crop quality

Flowering reduced

 High nitrates in food crops

Heavily infested tassel

NITROGEN AND PLANT GROWTH AND DEVELOPMENT Plant roots take up N from soil solution as nitrate (NO_3^-) - Moves easily to root in soil water NITRATE Exchanges at root surface

Increases soil pH near roots

 NITROGEN AND PLANT GROWTH AND DEVELOPMENT
 Plant roots take up N from soil solution as ammonium (NH₄⁺) – Exchange at root surface

Lowers soil pH near roots

A mixture of nitrate and ammonium is best for plants

NITROGEN FIXATION

 Process by which gaseous elemental nitrogen (N) is chemically combined with hydrogen (H) to form ammonia (NH₄⁺)

 Occurs at ordinary temperatures and is carried out by certain bacteria, algae, and actinomycetes

NITROGEN CYCLE

IMMOBILIZATION AND MINERALIZATION

 95-99% of soil nitrogen is in organic compounds, protected from loss, but unavailable to plants

Present in proteins or humus

Mineralization and Immobilization

Created by J. Strock University of Minnesota

AMMONIUM AND CLAY COLLOIDS
 NH₄+ can be held by certain clays
 – Non-exchangeable form
 – Released slowly to plants and microbes

NITRATE LEACHING PROBLEM

 Negatively charged nitrate ions are repelled by negatively charged clay colloids

 Nitrates move freely with drainage water

NITRATE LEACHING PROBLEM Contributes to impoverished ecosystem Loss of N Facilitates loss of Ca and other cations Economic loss equal to value of N lost Contaminates drinking water Causes eutrophication

NITRATE LEACHING PROBLEM

 Amount of water leaching through soil

- Nitrate content of water
- Highest in highly fertilized sandy soils with high rainfall

Over fertilization

BIOLOGICAL NITROGEN FIXATION

 Most important biochemical reaction on earth after photosynthesis

 Atmospheric di-nitrogen gas (N₂) converted to N-containing organic compounds via nitrogen cycle

 Carried out by bacteria, actinomycetes, and blue-green algae **Biological Nitrogen Fixation**

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

TYPES OF BIOLOGICAL NITROGEN FIXATION

Legumes with nodules and bacteria

 Non-legumes with nodules and actinomycetes

 Non-legumes without nodules and with cyno-bacteria (blue-green algae)

Non-symbiotic or free-living legumes

N FIXATION SYSTEMS

 Symbiotic relationship between legumes and bacteria (*Rhizobium/Bradyrhizobium*)
 Provide the major source of fixed N in agriculture

SYMBIOTIC N FIXATION WITH LEGUMES

 Bacteria "infect" plant and form root nodules which is site of N fixation

 Plant supplies bacteria with carbohydrates

 Bacteria supply plant with fixed N compounds

REACTION OF N FERTILIZERS

May increase soil acidity

Excess N can be lost via:

- Leaching
- Surface runoff
- De-nitrificaiton
- Ammonia volatilization

PRACTICAL MANAGEMENT OF SOIL N IN AGRICULTURE

 Challenge is to harmonize N losses and N gains for optimum plant growth

END OF PRESENTATION