LEAF-FEEDING INSECT PESTS OF WOODY PLANTS

IDENTIFICATION, BIOLOGY, AND MANAGEMENT

Introduction

Pest Identification

- * Pest significance
- * Pest Biology
- * Pest Management

Leaf-Feeing Insect Pests

"Webs and Tent-Makers"

* Consumers

Skeletonizers

Leaf-Feeding Insect Pests

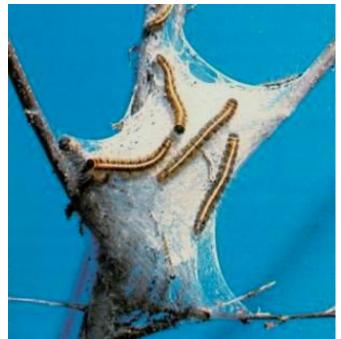
Leafminers

* Notchers

Eastern Tent Caterpillar

- * Preferred hosts:
 - Crabapple
 - Peach
 - Plum
 - Cherry
- Overwinters as egg mass
- ***** Appears in early spring

Eastern Tent Caterpillar


- Tents form in main branch crotches
- One generation/year
- Completely defoliation may result

Pest Management

Prune out tents early

Chemical insecticides

Fall Webworm

 Form webs on branch tips

- Broad host range
- Common in late summer

Fall Webworm

One generation/year

Larvae are hairy and straw colored

Pest Management

* Prune out webs

* Chemical insecticides

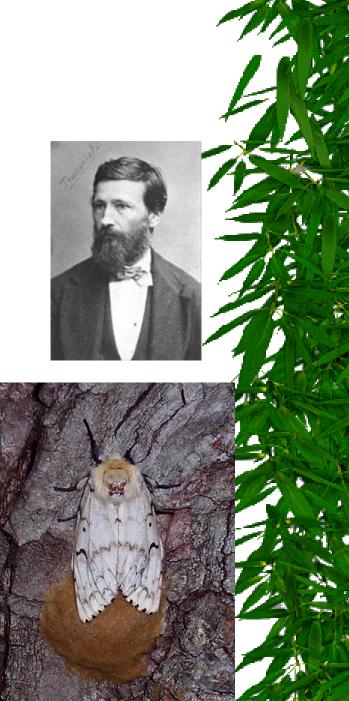
Mimosa Webworm

 Host specific on honeylocust

- Two generations/year
- * Overwinters as pupa

Mimosa Webworm

- * Webs the leaflets together
- Complete tree defoliation may result



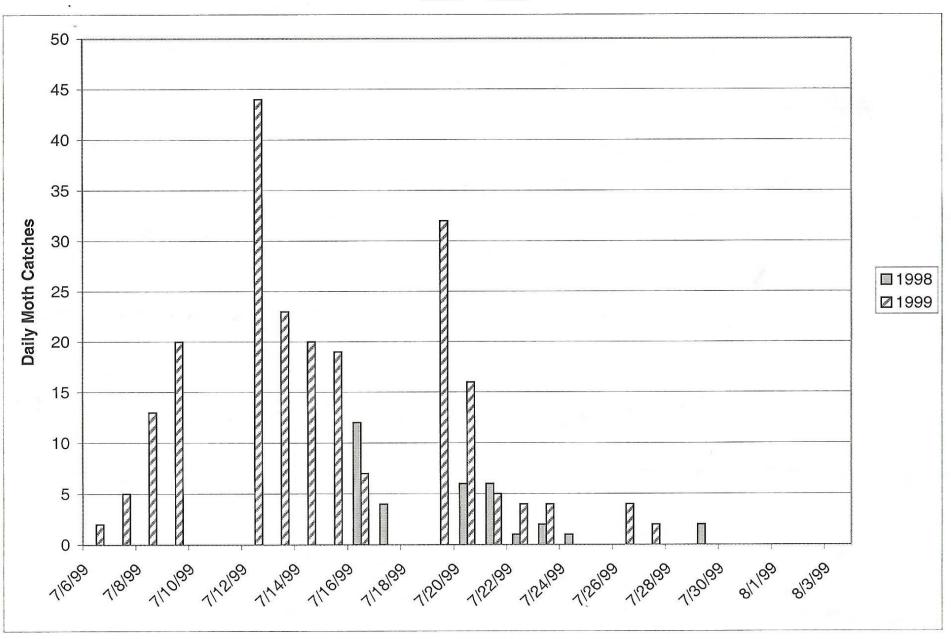
Gypsy Moth

 Entered the U.S. in late 1860's from Europe

 Major defoliator of forest and shade trees

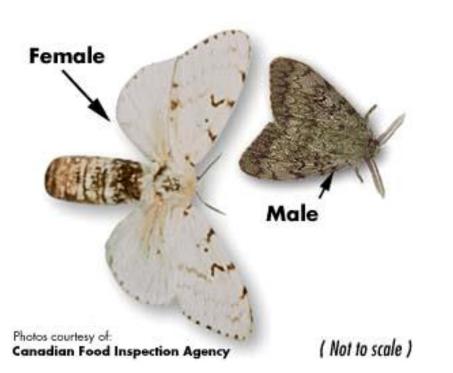
- * Preferred host is oak
- * Overwinters as egg mass

Gypsy Moth Life Cycle


Gypsy Moth Larvae

* Larvae are hairy

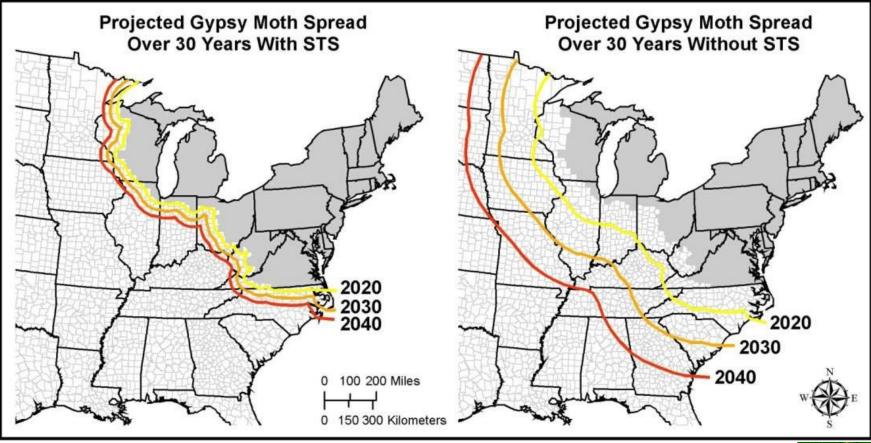
Have 6 pairs of red dots and 4 pairs blue dots on back



Adult Male Gypsy Moth Catches The Morton Arboretum 1998 - 1999

Gypsy Moth Adults

* One generation per year


Gypsy Moth

- Populations are somewhat regulated by cultural and biological controls
- Chemical sprays are used during outbreaks

"Early Slow the Spread Program"

Slow the Spread Program

Gypsy Moth in Illinois

European Pine Sawfly

Preferred hosts are
 Scots and mugho pines

* Larvae resemble caterpillars

European Pine Sawfly

 Consume the entire needle

* Eat last year's growth

Feeding Damage

* One generation/year

 Severe defoliation is possible

Pest Management

* Remove larvae by hand-picking

Chemical treatment is most effective

Leaf Beetles

- Both larvae and adults feed on leaves
- * Adults chew holes in the leaves
- * Larvae "windowpane" the leaves

Leaf Beetles

- Hosts include willow, poplar, viburnum, and elm
- * Multiple generations per year

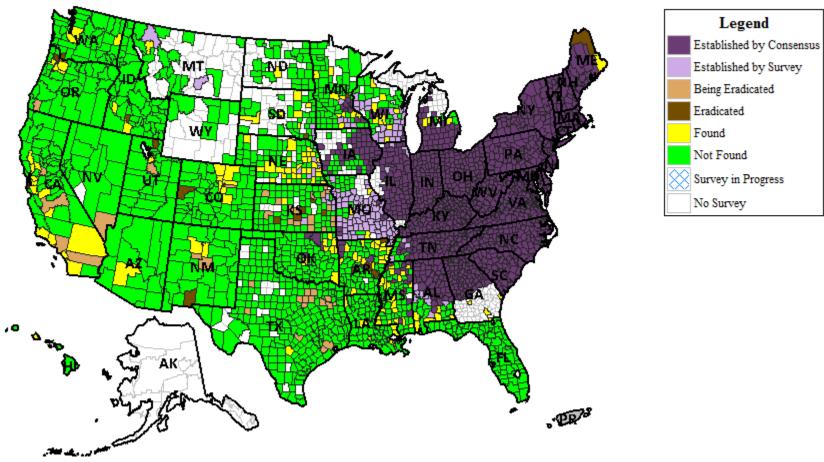
Leaf Beetles

 Overwinter as adults in protected sites

Heavily defoliated trees
 will appear scorched

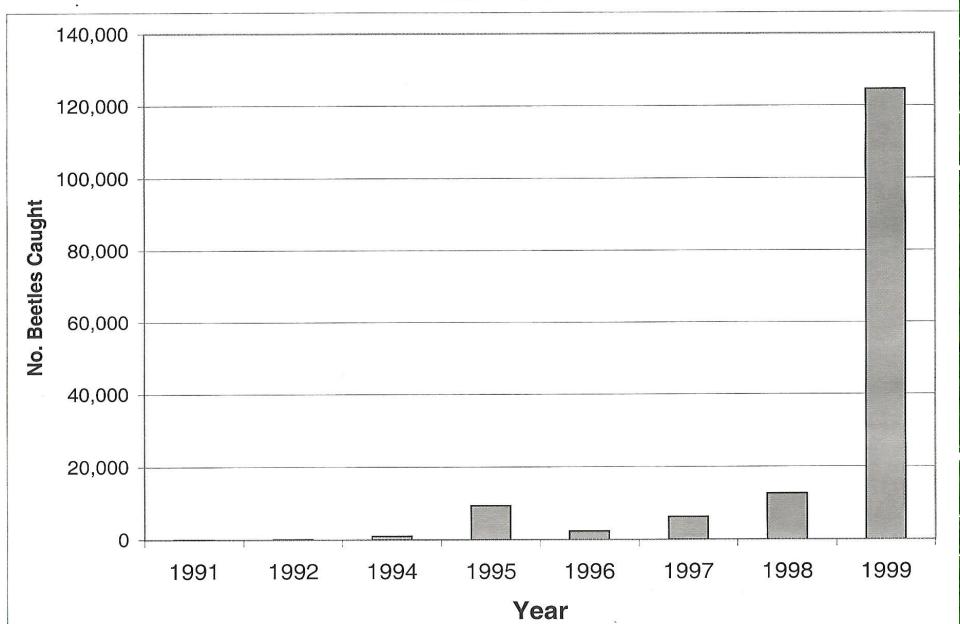
Pest Management

- Host plant resistance
- * Chemical insecticides
- * Trunk banding
- Biological control


Japanese Beetle

- * Broad host range
- Prefers hosts are Rose family, lindens, elms, and grape
- Adults skeletonize the leaves

Survey Status of Japanese Beetle - Popillia japonica All years



q

Japanese Beetles The Chicago Botanic Garden 1995 - 1999

Year	Date First Beetles Caught	Degree Days	Date of Peak Catch	Degree Days
1995	3-Jul	984	17-Jul	1375
1996	8-Jul	819	9-Aug	1474
1997	9-Jul	822	23-Jul	1162
1998	19-Jun	749	24-Jul	1605
1999	21-Jun	763	21-Jul	1479.5

Adult Japanese Beetle Catches The Chicago Botanic Garden 1991 - 1999

Feeding Damage

MA .

Japanese Beetle

- * Overwinters as a grub
 *
- * Grub feeds on turf roots
- One generation/year

* Adults active for 6-8 weeks

Pest Management

Host plant resistance

 Leaf chemistry and morphology may play a role

* Chemical insecticides

- Conventional insecticides
- Bio-rational insecticides

Pest Management

* Hand-picking (Switzer and Cumming, 2014)

- Most effective for small-scale management
- Most effective in evening
- Reduces positive feedback between existing and future beetles
- Female with heavy egg loads more likely to initiate aggregation
- Males and females with lower egg loads join existing aggregations
- * Biological Control (Behle and Goett, 2016)
 - Fungus *Metarhizium brunneum* was found to be effective against beetles grubs and adult beetles

Less Preferred Hosts

- * Acer negundo
- * Acer rubrum
- * Acer saccharinum
- Carya ovata
- Euonymus spp.
- Fraxinus americana
- Fraxinus pennslyvanica
- * *llex* spp.
- Juglans cinerea
- * Liriodendron tuliperfera
- Magnolia spp.

Less Preferred Hosts

- Morus rubra
- Populus alba
- Pyrus communis
- Quercus alba
- Quercus rubra
- Quercus velutina
- * Rhododendron spp.
- Syringa vulgaris
- * Abies spp.
- * *Taxus* spp.
- Pinus spp.
- * Picea spp.

Preferred Hosts

- * Acer palmatum
- * Acer platanoides
- * Betula populifolia
- Hibiscus syriacus
- * Juglans nigra
- * Malus spp.
- Platanus acerifolia
- Populus nigra

Preferred Hosts

- * Rosa spp.
- * Sassafras albidum
- Sorbus americana
- * Tilia americana
- * Ulmus americana
- * Ulmus procera
- * Vitis spp.

Japanese Beetle Traps

Leafminers

- Usually host specific
- * Larvae mine the areas between the upper and lower leaf surfaces
- * Mines appear as **blotch** or **serpentine**,
- * Usually causes aesthetic damage

Leafminers

- May have one or two generations/year
- Usually overwinter as larvae or prepupae
- Chemical management is the most effective treatment

Leafminers on Oak, Elm, and Arborvitae

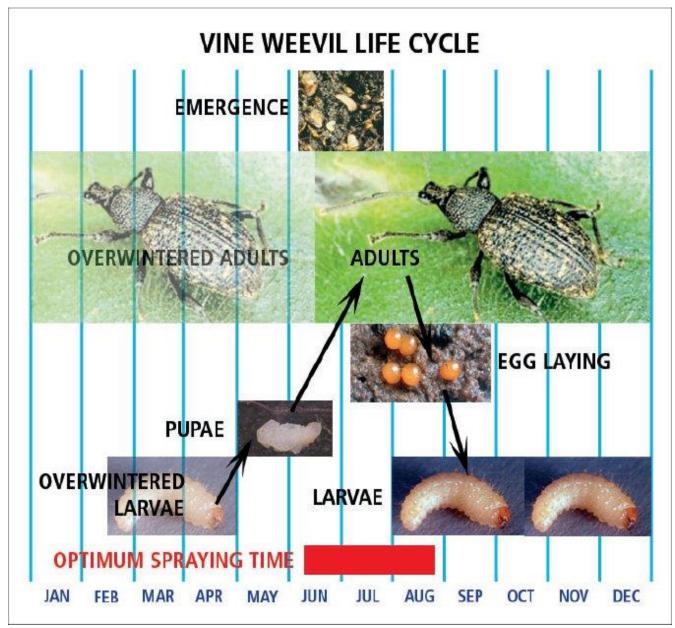
"Notchers"

* Black vine weevil

- Adults notch leaf margins
- Adults feed at night
- Adults not able to fly
- Reproduces parthenogenetically

* No males in the population

"Notchers"


- Black vine weevil
 Larvae feed on roots
 - One generation per year

Black Vine Weevil Lifecyle

Management of BVW

- Chemical insecticides
- Sanitation

- Larvae controlled using entomopathogenic nematodes (EPNs)
 - Steinernema feltiae
 - Heterorhabditis bacteriophora
- Study with EPNs on strawberries showed that EPNs controlled BVW for up to 4 years
- Portable listening devices used for insect detection in containers

"Notchers"

* Leaf-cutter bees

- Harmless, no control needed
- Cut U-shaped notches in leaf margins
 * 1/4-1/2 in.
- Use leaf portions for nesting

SUMMARY

* Leaf-feeding insects rarely kill plants

 Defoliation of evergreens can be lethal

 Healthy plants can tolerate low to moderate defoliation

SUMMARY

- Repeated heavy defoliation events may lead to:
 Stress, Decline, and Death
- Chemical management can be effective
- Plant Health Care (PHC) should be an integral part of the management plan

END OF PRESENTATION

