THE SOILS AROUND US

CHAPTER 1

Functions of Soils in Our Ecosystem (Fig. 1.2)

Supports plant growth

Controls water in hydrologic system

Functions as a recycling system

Functions of Soils in Our Ecosystem

Important role in engineering medium

Provides habitat for numerous organisms

Medium for Plant Growth

Physical support

Water and water-holding capacity

🛛 Air

Medium for Plant Growth

Temperature modification

Protection from toxins

Nutrient elements

Essential Macroelements for Plant Growth

Nitrogen

Phosphorus

Potassium

Essential Macroelements for Plant Growth

Essential Microelements for Plant Growth (Table 1.1)

- Iron Chlor
 Manganese Coba
 Boron Moly
 Zinc Nicke
- Chlorine Cobalt Molybdenum Nickel

Copper

Hydroponics - plants grown in nutrient solutions instead of soil

Regulator of Water Supplies

All of water supplies have at some time or another passed through the soil

Recycler of Raw Materials

Organic waste is turned into humus

Converts mineral nutrients into forms utilized by plants

Habitat for Soil Organisms

Predators

Producers

Consumers

Habitat for Soil Organisms

Parasites

Soils harbor much of the earth's diversity

"Terra firma", solid ground

Some soils are more stable than others

Bearing strength, compressibility, and stability are harder to predict with soils

Soil as an Environmental Interface

Lithosphere - rock

Atmosphere - air

Hydrosphere - water

Soil as an Environmental Interface

Biosphere - living things

Pedosphere - soil

Soil as a Natural Body

"The Soil" - a collection of individually different soil bodies

A Soil" - individual body of soil or three dimensional natural body

Soil as a Natural Body

Soil is the product of both destructive and creative (synthetic) processes
 Soil horizons - contrasting soil layers

Pedology - study of soil as a natural body

Edaphology - study of soil as a living entity

Soil Profile and Its Layers

Soil profile - vertical section of soil exposing a set of horizons (Figure 1.9)

Profiles can be helpful in identifying potential soil problems

Soil Profile and Its Layers

O-horizon - organic layer (Figure 1.10)

A-horizon - nearest the surface with mineral particles (topsoil)

Plow layer - cultivation of the top 5-10 inches of soil profile

Soil Profile and Its Layers

Subsoil - layer below A and O horizons

B-horizon - accumulation of clays, gypsum, and calcium carbonates

C-horizon - least weathered part of soil

R-horizon - bedrock

Major Components of Soil

□ Air □ 25% of soil volume

Water

□ 25% of soil volume

Major Components of Soil

Mineral matter

Organic matter

5% by volume2% by weight

Mineral Constituents of Soils

Most of the soil's framework consists of mineral particles

Particles vary greatly in size and composition

Sand - 2.0 to 0.05 mm.

Silt - 0.05 to 0.002 mm.

□ **Clay** - < 0.002 mm.

Mineral Constituents of Soils

Colloidal systems - two-phase systems in which very small particles of one substance are dispersed in a medium of a different substance (Table 1.2)

□ Site of soil chemistry and physical activity

Important in supplying nutrients

Soil Texture

Proportion of particles in different size ranges

- Sandy loam
- □ Silty clay
- Clay loam
- Important in holding inorganic chemicals and supplying nutrients

Soil Structure

Arrangement of soil particles Aggregates - association of different size soil particles

Soil Organic Matter

- Includes the soil biomass
- □ Surface soils contain 1-6% OM
- Binds mineral particles into a granular soil structure
- Increase water-holding capacity
- Major source of plant nutrients (N,P,S)

Soil Organic Matter

Humus - collection of complex organic compounds Black or brown in color

Important in formation of soil structure

Increases soil's capacity for plant growth

Soil Water

Held within soil pores
 Considered a soil solution

 Nutrient solution with Ca, K, N, P

 Not all soil water is available to plants

 Macro and intermediate pores - yes
 Micro-pores - no

Soil Water

```
    Soil solution (Figures 1.17,18)
    Neutral: H<sup>+</sup> ions = OH<sup>-</sup> ions
    Acidic: H<sup>+</sup> ions > OH<sup>-</sup> ions
```

Alkaline or basic: OH^- ions > H^+

Soil Water

pH = acidity or alkalinity of soil solution
 Considered master variable

Controls chemical and biological reactions
 Bio-availability of nutrients and pollutants

Soil Air

- Air content is inversely related to water content
- Varies greatly from place to place
- Higher moisture content than atmospheric air
- □ CO₂ is higher and O₂ lower compared to atmosphere

Supplying Plant Nutrients

- Provision of essential nutrient elements to plants
- Adsorption or attraction of charge ions
- Held as exchangeable ions
 - Most important chemical reaction nature
- Roots can only absorb nutrients dissolved in soil solution

Nutrient Uptake by Plant Roots

Nutrients must be in soluble form!

- Located at root surface
- Basic mechanisms for nutrient concentration at root surface (Fig. 1.20)
 - **Root interception**
 - Diffusion greater concentration to lower concentration
 - Image: Microorganism activity

Soil Quality, Degradation, and Resilience

Reusable resource

Not considered a renewable resource

Soil quality - measure of the soil's ability

- to carry out ecological functions
 - Chemical
 - Physical
 - Biological

Soil Quality, Degradation, and Resilience

- Resilience ability recover from minor degradation
- Restoration ecology restoring of plant and animal communities
- Soil restoration restoring soils to their original condition

SUMMARY

- Each soil is characterized by unique properties, horizons, and profiles
- Soils perform five ecological functions
 Medium for plant growth
 - □ Regulate water supplies
 - Recycle raw materials and waste products
 - Engineering medium for construction

SUMMARY

Soil is a major ecosystem

□ Good surface soil for plant growth is: □ 1/2 soil material (minerals/organic matter)

□ 1/2 pore spaces filled with water and air