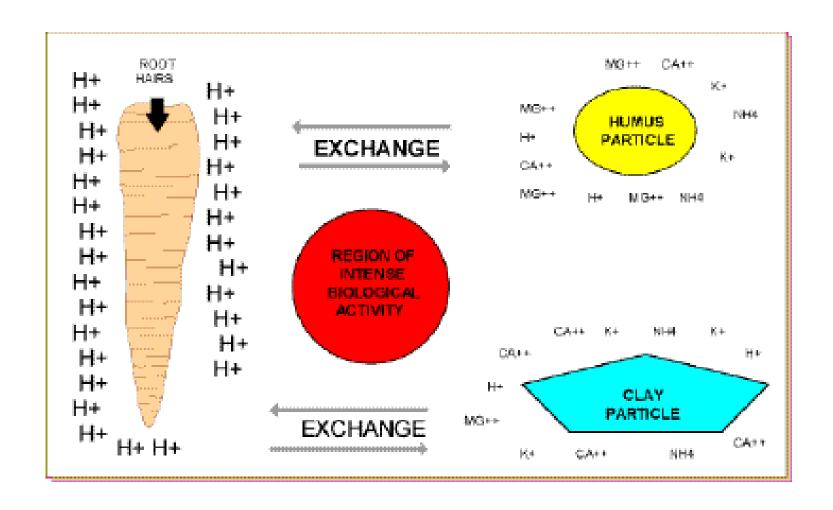


CATION EXCHANGE CAPACITY

A MEASURE OF SOIL FERTILITY


WHAT IS CATION EXCHANGE?

- The replacement of one adsorbed cation by another cation from solution
 - Colloid-A + B = Colloid-B +A
- Soil colloids (clay/humus) usually have a negative (-) charge and attract cations (+) on or near their surface
- Other cations in soil solution that approach the held cation may be able to replace it or exchange for it

- Adsorbed cations resist removal by leaching water, but can be replaced (exchanged) by other cations by mass action (competition for the negative site by large number of cations)
- Takes place on surfaces of clay and humus colloids, and plant roots
- Cations most numerous on exchange sites are Ca⁺², Mg+², H⁺, Na⁺, K⁺, Al⁺³, NH⁺⁴

- Proportions of cations are constantly changing as ions are added/lost from:
 - Minerals or additions of lime, gypsum, fertilizers
 - Lost by plant absorption or leaching
- Water moving through the soil will lose soluble cations to the soil and pick up other cations replaced from exchange sites by cations being absorbed
 - K+, NH+4, Ca²⁺ do not move far before they are reabsorbed or used by plants

- Different ions move at different speeds
 - Well vegetated soils lose less N than bare soils
 - Less S is needed so losses are not significant
 - Non-organic soils have little loss of phosphates
 - Chlorides easily leach with water

LEACHING LOSSES (kg/ha) OF CATIONS AND ANIONS

SOIL TYPE	Ca	Mg	K	N	S
IL-Prairie	101	52	1	86	12
Bare Soil	374	104	45		

 Rate of movement of cations decreases as adsorption increases

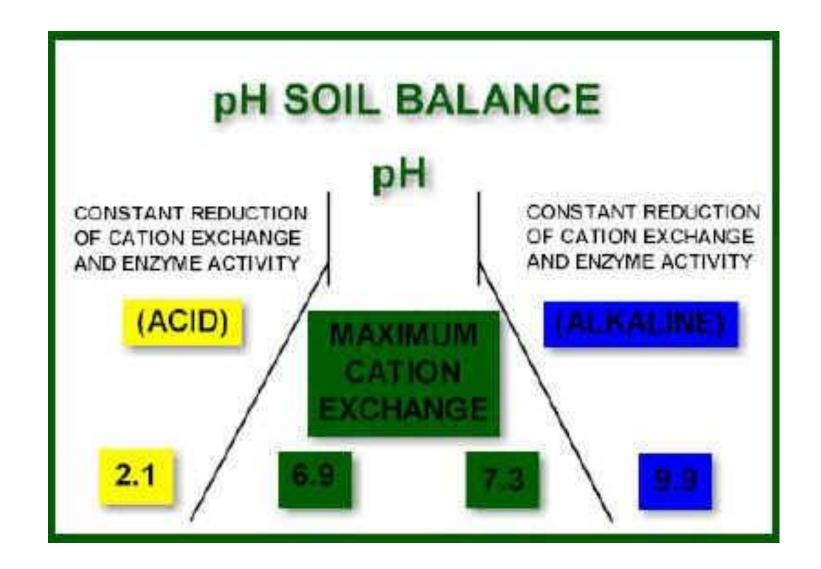
$$Na^{+} < K^{+} = NH_{4}^{+} < Mg^{2+} = Ca^{2+} < AI < H^{+}$$

 Liming the soil to correct acidity is a cation exchange reaction

CATION EXCHANGE CAPACITY

- The quantity of exchangeable cation sites per unit of weight of dry soil
 - Measured in centimoles_c of cations per kilogram of dry soil (cmol_c/kg)
 - Centimoles_c is used rather than weight because the number of negative sites in a given soil does not change, but the weights of the adsorbed cations do change
 - One centimolec means 1/100 mole of charged units (ex. $Ca^{2+} = 2$ centimole_c)

AMOUNTS OF EXCHANGEABLE CATONS IN SOIL


SOIL	CEC	Ca	Mg	K	Na	H & Al
Sandy Soil (pH=6.4)	5	1.9	1.2	0.3	Trace	1.8
Silt Loam (pH=6.7)	25	17.1	3.1	0.4	0.1	4.7
Organic layer (pH=3.6)	106	5.8	6.5	0.5	1.3	91.6
Sandy Loam (pH=3.5)	24	2.7	0.6	0.06	0.02	20.6
Clay (pH=4.9)	26	8.1	2.1	0.6	0.1	15.6
Volcanic Loam (pH=5.3)	103	6.7	1.2	0.4	0.4	94.9

NORMAL RANGE OF CEC VALUES BY SOIL GROUPS

SOIL GROUP	EXAMPLES	CEC (meg/100g)
Light Colored Sands	Plainfield/Bloomfield	3-5
Dark Colored Sands	Maumee/Gilford	10-20
Light Colored Loams and Silt Loams	Clermont/Miami	10-20
Dark Colored Loams and Silt Loams	Sidell/Gennessee	15-25
Dark Colored Silty Clays	Pewamo	30-40
Organic Soils	Carlisle Muck	50-100

IMPORTANCE OF CATION EXCHANGE

- Causing and correcting of soil acidity and basicity
- Altering soil physical properties
- Purifying or altering percolation water
- Ca, Mg, and K are supplied to plants from exchangeable forms

IMPORTANCE OF CATION EXCHANGE RELATIONSHIPS

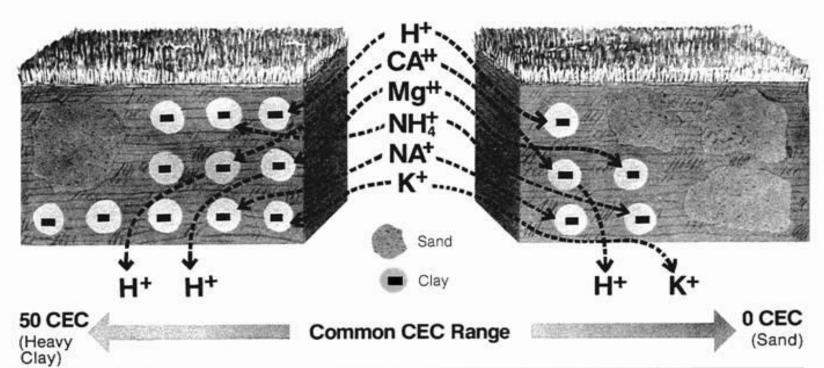
- Exchangeable pools of Ca, Mg, and K are major sources of plant nutrients
- Amount of lime required to raise pH increases as CEC increases
- Cation exchange sites hold cations and slow their losses due to leaching

IMPORTANCE OF CATION EXCHANGE RELATIONSHIPS

Cation exchange sites hold K and NH₄ fertilizers

- Cation exchange sites adsorb metals preventing groundwater pollution:
 - Examples: Cd, Zn, Ni, Pb

RELATIONSHIP BETWEEN CEC AND FERTLIZATION PRACTICES


- Soils with high CEC and high buffer capacity change pH much slower than low CEC soils
- High CEC soils do not need to be limed as often as low CEC soils
- ▶ Fall fertilization of N and K on low CEC (<5 meg/100 g) soils/sandy soils can result in leaching. Spring fertilization is better

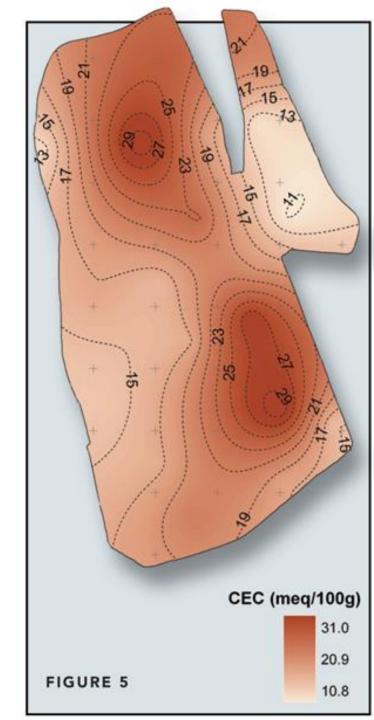
A SCHEMATIC LOOK AT CATION EXCHANGE

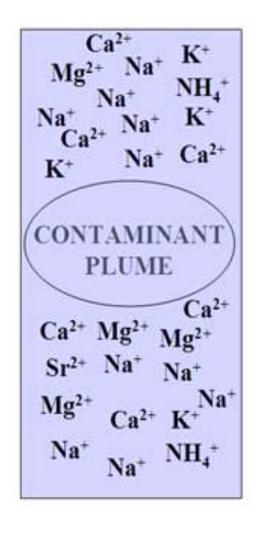
CEC 25

MORE CLAY, MORE POSITIONS TO HOLD CATIONS CEC 5

LOW CLAY CONTENT, FEWER POSITIONS TO HOLD CATIONS

SOME PRACTICAL APPLICATIONS			
Soils with CEC 11-50 Range	Soils with CEC 1-10 Range		
 High clay content More lime required to correct a given pH Greater capacity to hold nutrients in a given soil depth Physical ramifications of a soil with a high clay content High water-holding capacity 	High sand content Nitrogen and potassium leaching more likely Less lime required to correct a given pH Physical ramifications of a soil with a high sand content Low water-holding capacity		


RELATIONSHIP BETWEEN CEC AND FERTLIZATION PRACTICES


- Higher CEC soils (>10 meg/100g)
 experience little cation leaching
- Fall applications of N and K is appropriate
- Soil drainage will have a greater effect on fertilization practices on soils with high CEC


SUMMARY

Cation Exchange Capacity (CEC) of a soil determines the number of cations that the soils can hold

In turn, this can have a significant effect on the fertility management of soils

